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S| Materials and Methods

Taxa Sampled, DNA Extraction, Amplification, and Sequencing. Data
collection was completed in two tiers. Tier 1, comprising 42 taxa
representing the order Diptera and three holometabolous out-
groups, was sampled for sequence data from 12 nuclear protein-
coding genes, 18S and 28S ribosomal DNA, and complete mi-
tochondrial genomes, along with 371 morphological characters
(Table S1). In a few cases, different species were used for mi-
tochondrial sequencing vs. nuclear genomic sequences, but all
were sampled from the same family or terminal taxonomic lin-
eage and concatenated as “chimeric” taxa in combined datasets
(Table S1). Tier 2, comprising 202 taxa and three additional
outgroups, including at least one species from 149 of the ~157
recognized families, was sampled for 5 nuclear genes (7 kb;
Table S1). The majority of sequencing work was completed at
North Carolina State University, according to the following
protocol, but large portions were also performed in the labora-
tories of J.S. and R.M. following similar methods.

Nuclear genomic DNA was extracted using the DNeasy DNA
extraction kit (QIAGEN, Inc.) and the RNA extraction kit (for
RT-PCR) (QIAGEN, Inc.). The standard protocol was altered by
extending the amount of time the specimen was in proteinase K
solution to 2 d to allow enzymes to penetrate the cuticle without
grinding the specimen. The final elution was reduced to 30 pL to
avoid diluting the DNA solution. Genes were amplified and se-
quenced using published Diptera primers for 28S and 18S (1) as
well as degenerate primers designed by J. K. Moulton for CAD
(2) and by J-W.K. for the remaining protein-coding genes.
Primer sequences varied and were often family- or taxon-specific
(available on request from B.M.W.). PCR parameters varied for
all genes but followed typical three-step reaction protocols
(available on request from B.M.W.). PCR products were ex-
tracted from agarose gels and purified with the Qiaquick Gel
Extraction kit (QIAGEN, Inc.). Big Dye Sequencing kits (Ap-
plied Biosystems) were used for sequencing reactions, and se-
quencing was completed at the North Carolina State University
Genomic Sciences Laboratory. Sequences were assembled and
edited using Sequencher 4.1 (Gene Codes Corp.). Alignment of
ribosomal genes for tier 1 was inferred by eye through manual
alignment in the on-screen alignment editor of GDE 2.2 (http://
www-bimas.cit.nih.gov/gde_sw.html) and adjusted according to
published secondary structure models (3, 4). Alignment of pro-
tein-coding genes was carried out manually according to the
amino acid translation using Sequence Alignment Editor, ver-
sion 2.0 (Se-Al 2.0). Introns and other positions of ambiguous
alignment were removed from the analysis. The 28S data for tier
2 were aligned in a hierarchical fashion using the program
MUSCLE (5) in three separate runs. We first aligned all dip-
teran sequences (using only tier 1 exemplars for Schizophora),
brachyceran sequences only next, and then those of Schizophora
only. For each alignment, regions of ambiguous alignment were
delimited and excluded using Gblocks (Gblocks version 0.91b)
(6), with exclusion regions adjusted manually. The alignments
were then combined manually in Se-Al 2.0, such that regions
found to be conservative at lower levels (Schizophora only or all
Brachycera) but unalignable at higher levels (lower Diptera and/
or lower Brachycera and lower Cyclorrhapha) were included for
conserved taxon blocks only. To detect existing base composi-
tional bias, a x? test of homogeneity of base frequencies across
taxa was performed for the concatenated dataset using Tree
Puzzle (7) (and PAUP). For the combined tiers dataset, all three
partitions are significantly heterogenous according to PAUP,
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with or without third positions (ribosomal, mitochondrial, and
nuclear), although the mitochondrial partition approaches non-
significance without third positions (P = 0.04).

Mitochondrial Genomes. Mitochondrial genomes were obtained
by the laboratories of A.T.B. and M.F. Approximately 1-3 g of
tissue was ground in the presence of proteinase K, and total
genomic DNA was extracted using a standard phenol-chloro-
form extraction protocol and Nucleospin DNA purification col-
umns (Macherey—Nagel) later. After ethanol precipitation, extracts
were dried and dissolved in 100-200 pL of distilled water. The gen-
eral strategy for amplification and sequencing was to amplify frag-
ments of 500-1,500 bp using standard primers (8). Details of the
amplification conditions and purification of templates are given by
Beckenbach and Stewart (9). In the laboratory of M.F., PCR frag-
ments were cleaned up with the QIAquick PCR Purification kit
(QIAGEN, Inc.) and sequencing was done with BigDye (Applied
Biosystems) and outsourced to MCLab. Purified PCR products were
sequenced from both strands using the amplification primers. Ad-
ditional, taxon-specific primers were designed as needed to fill gaps
that occur when standard primers failed to produce a usable prod-
uct. In the laboratory of M.F., base calling was performed with Phred
(Phred; Codoncode Corp.) and contig assembly was done via Phrap/
Cross_match/Swat (Phrap; Codoncode Corp.). Contigs were visu-
alized and assembled in BioLign version 4.0.6.2.

Morphology. The analysis of morphological characters was com-
pleted by the international team of C.L., B.S., T.P., G.C, J.S.,
R.M.,D.KY., A. Borkent, and V.B. A primary obstacle in coding
characters across the entire order Diptera was the issue of ho-
mology, especially when comparing Cyclorrhapha with lower
Diptera (e.g., larval mouthparts, male genitalia). We were initially
guided in determination of homology by two major historical
works that proposed dipteran relationships based on studies of
morphological character systems, Hennig (10) and the Manual of
Nearctic Diptera (11-13). Hennig (10) discussed the monophyly
of major groupings of Diptera. His systematic approach was the
foundation for the studies of relationships in the third volume of
the Manual of Nearctic Diptera (11-13), commencing with rela-
tionships of Diptera with other holometabolous orders and
within the lower Diptera (11-13) and proceeding with the sub-
order Brachycera and groupings of the lower Brachycera, and,
finally, the Cyclorrhapha. We also considered studies of specific
anatomical structures, including antennae (14, 15), male geni-
talia (16-18), larval mouthparts (19), and wing venation, among
orders (20). We added morphological studies using quantitative
matrix-based phylogenetic methods examining relationships
among the lower or nematocerous families (1-23), lower Bra-
chycera (24), Empidoidea (25, 26), acalyptrates (27), and ca-
lyptrates (28, 29). From these numerous studies, we established
a list of 457 possible morphological characters to cover the an-
atomical diversity of Diptera. Over 2 y, team consultation re-
duced this to a comprehensive list of 371 external and internal
morphological characters for larvae (93), pupae (11), and adults
(267, including 55 head, 54 wing, 31 female genitalia, and 49
male genitalia). Morphological characters cover the diversity of
all fly families and the five holometabolous outgroups, and the
list is available on the FLYTREE morphology Web site. We
scored 42 first-tier dipteran exemplar taxa and 5 holometabolous
outgroup taxa for these characters to produce a morphological
supermatrix to examine relationships of Diptera (@) with other
holometabolous orders, (b) major infraordinal level groupings,
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(c) superfamilies at phylogenetic suture zones, and (d) among
families. Because only 47 taxa have been scored for the tier 1
analyses, there are some constant characters in the morpholog-
ical supermatrix.

Phylogenetic Analyses. ML analyses. Partitioned ML analyses were
completed with the molecular data from tier 1, tier 2, and tier 1
and tier 2 combined, all with third positions of protein-coding
genes removed (nuclear and mitochondrial), using RAXML 7.0.4
(30) (Fig. S1 and Table S2). We used the GTRMIX option,
which optimizes the topology using the GTRCAT approximation
and then computes a final likelihood score for comparison using
a standard GTR + I' model. Invariant sites were not modeled,
following advice in the RAXML manual. Separate partitions
were created for nuclear ribosomal, mitochondrial (not included
in tier 2), and nuclear protein-coding genes. For the combined
dataset, 1,000 independent runs from random starting trees were
performed to find the highest scoring replicate (31). Other
analyses were performed with 100 replicates. Node support was
calculated by acquiring bootstrap values from heuristic searches
of 1,000 resampled datasets, using the rapid bootstrap feature of
RAxML (32). Additional exploratory analyses were performed on
subsets of the combined dataset, including removal of unstable
taxa (see below), removal of Streblidae, and removal of outgroups.
The unstable placement of Nymphomyia was investigated by se-
lectively pruning taxa possibly involved in long-branch attraction
artifacts: all outgroups first and then outgroups plus Axymyia. This
resulted in the grouping of Nymphomyia and Axymyia when out-
groups were removed (plausibly attributable to long-branch at-
traction) and the return of Nymphomyia to the original position as
sister to remaining Diptera, excluding Deuterophlebiidae, when
Axymyia and outgroups were all removed.

Bayesian analyses. Tier 1. Bayesian analyses of tier 1 data were
completed with all positions included, third positions excluded,
and combined with morphology with third positions removed
(Fig. S2 and Table S2). An appropriate model of nucleotide
evolution, GTR + I + T in this case, was chosen using Mr.
Modeltest (Evolutionary Biology Centre, Uppsala University,
Uppsala, Sweden). Using MrBayes (33, 34), analyses were con-
ducted for 20 million generations and trees were sampled every
1,000 generations, with the first 25% discarded as burn-in. Each
nuclear gene was treated as a separate partition; however, when
third positions were included, each codon position of each gene
was treated as a separate partition. Mitochondrial data were not
partitioned by gene but were included in their own partition.
When third positions were included, each codon position of the
mitochondrial data was treated as a separate partition (first,
second, and third).

Exploratory Bayesian analysis of the combined tier 1/tier 2
molecular dataset with third positions removed was also per-
formed (GTR + I + I'), using more Markov chain Monte Carlo
chains than specified by default (two runs of 12 chains each) to
facilitate convergence. Three partitions were used: nuclear ri-
bosomal, mitochondrial, and nuclear protein-coding. The final
convergence statistic for the two runs (SD of split frequencies)
was 0.082 when aborted at ~40 million generations (2 mo). The
first 20 million generations were discarded as burn-in.

Stability Analysis. “Rogue” taxa of unstable placement may often
obscure support for otherwise robust clades by lowering clade
recovery values. To identify unstable taxa and gauge their effect
on support values, we tested stability of the placement of each
individual taxon in the set of 1,000 ML trees (including 999
suboptimal trees) from the combined data RAXML analysis. We
wrote a script in R, using the ape package (35) to prune each
single tip sequentially from the set of ML trees and then calcu-
late a stability statistic, s, which summarizes the change in par-
tition frequencies across the tree, s, as follows:
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where N-1 is the number of internal nodes on the pruned
phylogeny, x; and in are partition frequencies for corresponding
individual nodes in the original and pruned tree sets, re-
spectively, and d; is the depth of each node, measured as the
maximum number of branches between the node and any of its
descendant tips. This measure gives more weight to instability
affecting deeper nodes or multiple nodes simultaneously. Boot-
strap support values were then recalculated by pruning taxa (n =
19) above an arbitrary threshold stability value (s > 0.3) from the
original set of bootstrap trees. Our analysis does not consider
instability caused by unstable pairs of taxa or small clades; other
more computationally intensive methods accounting for this kind
of instability (36) failed for our tree set with available computing
power (Fig. S1).

Networks. To visualize conflicting phylogenetic signal in our
dataset and in our sample of bootstrap trees, we generated
a Neighbor Net and a bootstrap consensus showing all conflicting
splits in the program SplitsTree (37).

miRNA Analyses. We constructed miRNA libraries for two fly
species from tier 1 dataset, Episyrphus balteatus (Syrphidae) and
Megaselia scalaris (Phoridae). Libraries were constructed as de-
scribed (38). The small RNA libraries were sequenced using the
Roche GS-FLX pyrosequencer of the North Carolina State
University Genome Sciences Laboratory, and the resulting se-
quences analyzed with miRMiner (38). In all, we identified
137,059 miRNA sequences in our sample that were assignable to
1 of 159 known miRNA families.

Divergence Time Estimation. Divergence time estimates were cal-
culated for the ingroup-only combined dataset using the penal-
ized likelihood method (39) in 18s, version 1.71. To calibrate
divergence time estimates, the split between the Diptera stem
group and the nearest outgroup (Microchorista) was fixed at 256
Ma, corresponding to the mean age found by Wiegmann et al.
(40). The resulting crown group age for extant Diptera (~246
Ma) corresponds to the earliest known fossil fly, Grauvogelia
(~240 Ma) (41), which may represent a crown-group dipteran
(42-44). Other minimum age constraints were applied as listed
in Table S3, and the clade Schizophora was constrained to
a maximum age of 70 Ma, slightly older than the early Tertiary
age of the earliest confirmed schizophoran fossils (42). Cross-
validation analyses for the optimal smoothing parameter failed,
so final penalized likelihood runs were completed using values of
s = 1 and s = 1,000 to obtain a range of plausible divergence
times (Fig. S3 and Table S3).

This analysis was repeated without the maximum constraint for
Schizophora to gauge the dependency of results on this constraint.
This resulted in an inferred age for Schizophora of ~115 Ma.
Discrepancies between molecular- and fossil-based age estimates
for major radiations are common and probably reflect frequent
violation of molecular-evolutionary assumptions (e.g., correla-
tion of rates on ancestor and descendant branches) as well as
a missing fossil record of early stages of radiations. We consider
the results with the Schizophora constraint to be more realistic
and a missing fossil record for Schizophora of 50 Ma to be un-
likely, considering the dipteran diversity present in known Cre-
taceous deposits (43, 44).

Tests of Diversification. A family-level chronogram for flies was
produced by pruning the r8s (s = 1) phylogeny such that each
family is represented by a single tip, including three families
(Conopidae, Rhagionidae, and Heleomyzidae) that did not ap-
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pear as monophyletic. In addition, the representative of Stre-
blidae was pruned, because placement of this family outside of
Hippoboscoidea contradicts earlier robust results (45) and may
be attributable to systematic error. Approximate diversities of
each family were obtained from the current working version of
the Systema Dipterorum (46). Diversities for Anthomyzidae and
Heleomyzidae were combined, because the latter was found to
be paraphyletic with respect to Anthomyzidae. Diversities for
Streblidae and Nycteribiidae were likewise added to those of the
closely related Hippoboscidae. These data were used as input for
the MEDUSA program (47), which sequentially adds break-
points to a multirate birth-death model fitting the given branch
lengths and terminal diversities until subsequent breakpoints do
not result in a threshold difference in Akaike Information Cri-
terion (AIC) values (here, AAIC = 2). This method estimated
a highly significant (AAIC = 193) shift in rates at the origin of
Schizophora, as well as eight other shifts with much lower but
significant AAIC values. Estimated breakpoints were similar (7
of 10 breakpoints were identical) for chronograms constructed
with different smoothing parameters (Table S4); breakpoints
estimated from the chronogram with no maximum constraint for
Schizophora were also very similar (8 of 9 breakpoints were
identical) to the constrained results, although estimated specia-
tion rates were lower.
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Fig. S2. Tier 1 topology, molecular plus morphology. Phylogram of the Bayesian likelihood analysis of combined molecular and morphological data for the
tier 1 taxon set, based on concatenation of 14 nuclear genes, full mitochondrial genomes, and 371 morphological features. Thickened branches indicate nodes
supported by >90% posterior probability in Bayesian analysis. Dashed branches are abbreviated to fit within figure dimensions. Outgroup rooting below

Diptera is arbitrary.
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Fig. $3. Complete family-level chronogram. Full penalized likelihood chronogram for dipteran families (smoothing parameter, s = 1.0). Approximate number
of described species for each family is listed in parentheses to the right. Fossil constraints applied in the penalized likelihood analysis are marked by letters in
black bars (Table S3). Significant shifts in speciation/extinction rates identified in MEDUSA (for s = 1.0 chronogram) are marked by numbered diamonds. Taxa
were pruned from the actual results such that each family (even the three that were not monophyletic) is represented by a single taxon; the exemplar for
Streblidae, placement of which is possibly artifactual, was also pruned. Thus, the totals for Hippoboscidae include the related Streblidae and Nycteribiidae, and
the totals for Heleomyzidae include Anthomyzidae.
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Clade Size vs. Age for Diptera Families
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Fig. S4. Plot of species diversity vs. age for extant dipteran families.
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