Uncommon Descent Serving The Intelligent Design Community

Natural biomolecule measured while acting like a quantum wave

Share
Facebook
Twitter
LinkedIn
Flipboard
Print
Email

Physicists watched a chain of 15 amino acids “interfere with itself,”:

… thanks to the work of Armin Shayeghi at the University of Vienna and a few colleagues, who for the first time, have demonstrated quantum interference in molecules of gramicidin, a natural antibiotic made up of 15 amino acids. Their work paves the way for the study of the quantum properties of biomolecules and sets the scene for experiments that exploit the quantum nature of enzymes, DNA, and perhaps one day simple life forms such as viruses.

Emerging Technology from the arXiv , “A natural biomolecule has been measured acting like a quantum wave for the first time” at Technology Review

Paper. (open access)

Abstract: The de Broglie wave nature of matter is a paradigmatic example of fundamental quantum physics and enables precise measurements of forces, fundamental constants and even material properties. However, even though matter-wave interferometry is nowadays routinely realized in many laboratories, this feat has remained an outstanding challenge for the vast class of native polypeptides, the building blocks of life, which are ubiquitous in biology but fragile and difficult to handle. Here, we demonstrate the quantum wave nature of gramicidin, a natural antibiotic composed of 15 amino acids. Femtosecond laser desorption of a thin biomolecular film with intensities up to 1~TW/cm2 transfers these molecules into a cold noble gas jet. Even though the peptide’s de Broglie wavelength is as tiny as 350~fm, the molecular coherence is delocalized over more than 20 times the molecular size in our all-optical time-domain Talbot-Lau interferometer. We compare the observed interference fringes for two different interference orders with a model that includes both a rigorous treatment of the peptide’s quantum wave nature as well as a quantum chemical assessment of its optical properties to distinguish our result from classical predictions. The successful realization of quantum optics with this polypeptide as a prototypical biomolecule paves the way for quantum-assisted molecule metrology and in particular the optical spectroscopy of a large class of biologically relevant molecules.

Hat tip: Philip Cunningham

Comments

Leave a Reply