- Share
-
-
arroba
Many sources attribute the development of many complex life forms in the Cambrian to the growth of oxygen.
Now, from Phys.org:
The Cambrian explosion is one of the most significant events in Earth’s 4.5-billion-year history. The surge of evolution led to the sudden appearance of almost all modern animal groups. Fossils from the Cambrian explosion document the rapid evolution of life on Earth, but its cause has been a mystery.
The sudden burst of new life is also called “Darwin’s dilemma” because it appears to contradict Charles Darwin’s hypothesis of gradual evolution by natural selection.
It doesn’t just “appear” to contradict it; it does contradict it. Darwin knew that and suggested that the fossil record, filled in, would show that his theory was correct in the matter. Not so far.
At the boundary between the Precambrian and Cambrian periods, something big happened tectonically that triggered the spreading of shallow ocean water across the continents, which is clearly tied in time and space to the sudden explosion of multicellular, hard-shelled life on the planet,” said Dalziel, a research professor at the Institute for Geophysics and a professor in the Department of Geological Sciences.
Beyond the sea level rise itself, the ancient geologic and geographic changes probably led to a buildup of oxygen in the atmosphere and a change in ocean chemistry, allowing more complex life-forms to evolve, he said. More.
Researcher Ian Dalziel is appropriately cautious about the idea, which involves some different assumptions about early Earth geography than the conventional ones.
Here’s the abstract in Geology:
The geologically abrupt appearance in the fossil record of almost all animal phyla is referred to as the Cambrian radiation or “explosion” of life on Earth. Also known as “Darwin’s dilemma,” because it seemingly posed a major problem for his theory of gradual evolution, it coincided with the initiation of the first of the two principal global marine transgressions of the Phanerozoic. Although now seen as more protracted, it is still one of the most striking and critical events in the history of the biosphere. Almost all paleogeographic reconstructions for the early Cambrian feature a previously isolated Laurentia, the core of ancestral North America. Yet geological evidence from five continents, integrated here for the first time, indicates that the present-day “southern cone” of Laurentia was still attached to the newly amalgamated supercontinent of Gondwanaland into Cambrian times. Laurentia was then isolated by the development of a major deep oceanic connection between the opening Iapetus Ocean basin and the already well-developed paleo-Pacific. As the marine transgression advanced, major changes in ocean chemistry occurred, upwelling generated phosphorite deposits, and the number of fossilized metazoan phyla “exploded” with morphologic disparity between Laurentia and Gondwanaland already established. The development of this deep oceanic gateway, and of an ocean floor–consuming and arc-generating subduction zone along virtually the entire margin of Gondwanaland shortly thereafter, need to be taken into account in consideration of the global environmental and biotic changes associated with the Neoproterozoic-Phanerozoic transition. (paywall)
See also: Did a low oxygen level delay complex life on Earth?
Follow UD News at Twitter!