
From ScienceDaily:
University of Otago researchers have discovered information about a gene that sets primates — great apes and humans — apart from other mammals, through the study of a rare developmental brain disorder.
…
Dr O’Neill and research collaborators from Max Planck Institute of Psychiatry, Germany, then set forth to test the point that the gene drives aspects of brain development that are unique to primates. Some amazing data was found using a novel approach through studying human “mini-brains” in culture. It is now possible to take a skin cell and transform it using a set of genetic tricks, so that it can be triggered to form a tiny brain-like structure in culture in the lab.
Their results showed that the particular genetic change that disabled a component of this gene (PLEKHG6) altered its ability to support the growth and proliferation of specialised stem cells in the developing brain. In addition, some of these cells also failed to migrate to their correct position in the growing “mini-brain” during the first few weeks of brain development.
Professor Robertson says it has been known for a while that these stem cells behave differently between primates/humans and other animals, but understanding what genes regulate these differences has been a mystery.
“Adam’s achievement has been to show that this particular component of the PLEKHG6 gene is one such regulator that humans have ‘acquired’ very recently in their evolution to make their brains ‘exceptional’.”
Dr O’Neill says there are very few genetic elements that are primate specific in our genome, so this discovery adds to a very short list of genetic factors that, at least in one sense, make us human. – Material provided by the University of Otago More.
Here’s the paper. (open access) Summary:
The mammalian neocortex has undergone remarkable changes through evolution. A consequence of
such rapid evolutionary events could be a trade-off that has rendered the brain susceptible to certain neurodevelopmental and neuropsychiatric conditions. We analyzed the exomes of 65 patients with the structural brain malformation periventricular nodular heterotopia (PH). De novo coding variants were observed in excess in genes defining a transcriptomic signature of basal radial glia, a cell type linked to brain evolution. In addition, we located two variants in human isoforms of two genes that have no ortholog in mice. Modulating the levels of one of these isoforms for the gene PLEKHG6 demonstrated its role in regulating neuroprogenitor differentiation and neuronal migration via RhoA, with phenotypic recapitulation of PH in human cerebral organoids. This suggests that this PLEKHG6 isoform is an example of a primate-specific genomic element supporting brain development.
Follow UD News at Twitter!
See also: Researchers: Primates vary in speech capability. (But none speak.)
and
Study: Humans are the only primates that show kindness?