Uncommon Descent Serving The Intelligent Design Community

Deep learning is easy to fool?

controls for AI/Pbroks13

From Nguyen A, Yosinski J, and Clune J (2015) at Evolving Artificial Intelligence Laboratory:

Deep neural networks (DNNs) have recently been achieving state-of-the-art performance on a variety of pattern-recognition tasks, most notably visual classification problems. Given that DNNs are now able to classify objects in images with near-human-level performance, questions naturally arise as to what differences remain between computer and human vision. A recent study revealed that changing an image (e.g. of a lion) in a way imperceptible to humans can cause a DNN to label the image as something else entirely (e.g. mislabeling a lion a library). Here we show a related result: it is easy to produce images that are completely unrecognizable to humans, but that state-of-the-art DNNs believe to be recognizable objects with 99.99% confidence (e.g. labeling with certainty that white noise static is a lion). Specifically, we take convolutional neural networks trained to perform well on either the ImageNet or MNIST datasets and then find images with evolutionary algorithms or gradient ascent that DNNs label with high confidence as belonging to each dataset class. It is possible to produce images totally unrecognizable to human eyes that DNNs believe with near certainty are familiar objects. Our results shed light on interesting differences between human vision and current DNNs, and raise questions about the generality of DNN computer vision. More.

Of course, most of the time humans get fooled, we fool ourselves If AI doesn’t have a self, that reduces the theoretic inputs of possible fooling.

See also: Science has outgrown the human mind? Now needs AI?

Follow UD News at Twitter!


Leave a Reply