This is Part 1:

Now, it might seem entirely obvious today that you can do geometry in any number of dimensions, but it’s actually a fairly recent development. It wasn’t until eighteen forty-three, that the British mathematician Arthur Cayley wrote about the “Analytical Geometry of (n) Dimensions” where n could be any positive integer. Higher Dimensional Geometry sounds innocent, but it was a big step towards abstract mathematical thinking. It marked the beginning of what is now called “pure mathematics”, that is mathematics pursued for its own sake, and not necessarily because it has an application.

However, abstract mathematical concepts often turn out to be useful for physics. And these higher dimensional geometries came in really handy for physicists because in physics, we usually do not only deal with things that sit in particular places, but with things that also move in particular directions. If you have a particle, for example, then to describe what it does you need both a position and a momentum, where the momentum tells you the direction into which the particle moves. So, actually each particle is described by a vector in a six dimensional space, with three entries for the position and three entries for the momentum. This six-dimensional space is called phase-space.

By dealing with phase-spaces, physicists became quite used to dealing with higher dimensional geometries. And, naturally, they began to wonder if not the *actual space that we live in could have more dimensions. This idea was first pursued by the Finnish physicist Gunnar Nordström, who, in 1914, tried to use a 4th dimension of space to describe gravity. It didn’t work though.

Sabine Hossenfelder, “Does the Universe have higher dimensions? Part 1” atBackRe(Action)

This is Part 2:

As I explained in the previous video, if one adds 7 dimensions of space to our normal three dimensions, then one can describe all of the fundamental forces of nature geometrically. And that sounds like a really promising idea for a unified theory of physics. Indeed, in the early 1980s, the string theorist Edward Witten thought it was intriguing that seven additional dimensions of space is also the maximum for supergravity.

However, that numerical coincidence turned out to not lead anywhere. This geometric construction of fundamental forces which is called Kaluza-Klein theory, suffers from several problems that no one has managed to solved.

One problem is that the radii of these extra dimensions are unstable. So they could grow or shrink away, and that’s not compatible with observation. Another problem is that some of the particles we know come in two different versions, a left handed and a right handed one. And these two version do not behave the same way. This is called chirality. That particles behave this way is an observational fact, but it does not fit with the Kaluza-Klein idea. Witten actually worried about this in his 1981 paper.

Enter string theory.Sabine Hossenfelder, “Does the Universe have higher dimensions? Part 2” atBackRe(Action)

String theory predicted 26 dimensions. Supersymmetry brought it down to ten. You probably get the picture though.

This creates the same problem that people had with Kaluza-Klein theory a century ago: If these dimensions exist, where are they? And string theorists answered the question the same way: We can’t see them, because they are curled up to small radii.

Sabine Hossenfelder, “Does the Universe have higher dimensions? Part 2” atBackRe(Action)

The difference between quantum mechanics and string theory is that quantum mechanics is weird but demonstrable. String theory is weird, period. Gotta be a message in that somewhere.

To understand what a two-dimensional world would be like, try *Flatland* (1884).