Uncommon Descent Serving The Intelligent Design Community

Answering DiEb: Just what is “search” in a sense relevant to ID?

Share
Facebook
Twitter
LinkedIn
Flipboard
Print
Email

For some time now, objector DiEb has been raising the question, what do we mean by speaking of “search” in the context of evolutionary search. At 311 in the parody thread, she [IIRC] remarks:

>>Search is a central term in the work of Dr. Dr. William Dembski jr, Dr. Winston Ewert, and Dr. Robert Marks II (DEM): it appears in the title of a couple of papers written by at least two of the authors, and it is mentioned hundreds of times in their textbook “Introduction to Evolutionary Informatics“. Strangely – and in difference from the other central term information, it is not defined in this textbook, and neither is search problem or search algorithm. Luckily, dozens of examples of searches are given. I took a closer look to find out what DEM see as the search problem in the “Introduction to Evolutionary Informatics” and how their model differs from those used by other mathematicians and scientists.

I have responded yet again to the basic conceptual point (regardless of debate points re Marks, Dembski et al) to draw out why search challenge is a pivotal concern in the discussion of the design inference, based on the issue of large configuration spaces and islands of function, similar to Abel’s discussion of a decade or so ago in the peer-reviewed literature on the universal PLAUSIBILITY metric, principle and bound. I therefore consider it worth the while to headline as follows:

KF, 338: >>Several times, you have raised the issue of search. I have pointed out that at base, it is tantamount to sampling from a configuration space.

[As, algebraic representation is commonly desired (and is often deemed superior to illustration or verbal description), a traditional representation of such a space is to symbolise it as Omega, here we can use w. Search then is obviously — and the obviousness is a material point here — tantamount to taking a subset of cases k in w by whatever relevant means, blind or intelligent.  The search challenge then is to find some relevant zone z in w such that a performance based on configuration rises above a floor deemed non-functional: find/happen upon some z_i in w such that p(z) GT/eq f_min. Zones z are islands of function in the configuration space, w.]

[Let’s add a cluster of UD infographics over the years:]

An illustration of islands of organised function, per Trevors and Abel
The 1,000 bit observed cosmos complexity threshold i/l/o the Planck-time search window of 10^150 possibilities
FSCO/I as exemplified through coded text (paralleling punched paper tape and D/RNA strands), where per AutoCAD etc, any 3-D entity representing a functionally organised system can be reduced to strings in a description language so discussion on strings is WLOG
The D/RNA code in action, considered as an alphanumeric code with associated information-based cybernetic system

In the sense, blind search, by chance and/or mechanical necessity without intelligent direction or control or guidance or influence generally. This is directly relevant to the challenge of “finding” — strictly, happening upon the shorelines of — deeply isolated islands of function in config spaces of 500 – 1,000 bits or more of complexity. In these cases,

a: the atomic resources of the sol system or observed cosmos [10^57 to 10^80 atoms, more or less]

b: treated as observers each sampling at fast chemical reaction rates [~10^14 samples or observations/sec]

c: for 10^17 s (order of time since the typical projection to the singularity) will be
__________________________________

d: utterly overwhelmed by the scope of search to plausibly sample enough of the space to credibly hit one or more shorelines of function.

This does not require any detailed probability assessment, but indicates that by many orders of magnitude the challenge overwhelms the search resources.

As a direct result, blind search is not a plausible means of discovering zones exhibiting functionally specific complex organisation and/or associated information [FSCO/I] in sufficiently complex configuration spaces.

Where, per search samples the space, it is a subset, so the set of possible searches is comparable to the power set. If the direct set is of magnitude n, the set of searches is comparable in magnitude to 2^n. Thus, search for a golden search is plausibly exponentially harder than direct search.

Of course, typical discussions of fitness landscapes are about incremental hill-climbing within islands of function. They thus beg the question of arriving at shorelines of function. Where also, deep isolation is a direct result of FSCO/I requiring multiple, well matched components properly arranged and coupled to produce relevant results.

A 6500 C3 reel exploded diagram, illustrating the role of multiple, correctly aligned, oriented and coupled parts to achieve coherent function based on specific, information-rich organisation
A computer model of spiral bevel gear teeth, showing how precise configuration of parts of a whole is an inherent part of coherent, information-rich functionally specific organisation

And as a consequence of OOL requiring credibly 100k – 1,000 k bases and body plans 10 – 100 millions, we are well beyond the FSCO/I threshold in these cases.

So, it is not plausible that the FSCO/I seen in life forms at origin or at basic body plan level, originated by blind search.

Pausing, it is worth noting that the proposal that ability to reproduce leading to descent with incremental modification solves the problem typically overlooks that at OOL, there is need to account for the FSCO/I of the von Neumann kinematic self-replicator found in the living cell.

Likewise, that for body plan origins, many co-ordinated changes (often, involving reproduction) will have to be accounted for. Natural selection of reproducing entities does not evade the origin of FSCO/I challenge.

What, per Newton’s vera causa principle, has right to be regarded as an observed effective cause of FSCO/I? Intelligently directed configuration, aka design.

Indeed, we are well within our inductive logic, epistemic rights, to hold that FSCO/I is a well tested, highly reliable sign of design as materially relevant cause. On a trillion member observation base.>>

Consequently, we have a reasonable and robust baseline understanding of search and of search challenge that then drives reflection on the inductive logic, empirically justified design inference explanatory filter, here seen in the per aspect in succession form:

Thus, the design inference is an empirically grounded, robust framework for exploring origin of FSCO/I. And, it is testable by the simple means of identifying observed cases of origin of FSCO/I rich entities and evaluating whether blind search credibly and reliably causes FSCO/I. To date, on a trillion member observation base, no. END

Comments
Answering DiEb: Just what is “search” in a sense relevant to ID?kairosfocus
January 30, 2018
January
01
Jan
30
30
2018
03:10 AM
3
03
10
AM
PDT
1 2

Leave a Reply