- Share
-
-
arroba
Astrophysicist Mario Livio shares some thoughts: Math: Discovered, Invented, or Both?
The puzzle of the power of mathematics is in fact even more complex than the above examples from electromagnetism might suggest. There are actually two facets to the “unreasonable effectiveness,” one that I call active and another that I dub passive. The active facet refers to the fact that when scientists attempt to light their way through the labyrinth of natural phenomena, they use mathematics as their torch. In other words, at least some of the laws of nature are formulated in directly applicable mathematical terms. The mathematical entities, relations, and equations used in those laws were developed for a specific application. Newton, for instance, formulated the branch of mathematics known as calculus because he needed this tool for capturing motion and change, breaking them up into tiny frame-by-frame sequences. Similarly, string theorists today often develop the mathematical machinery they need.
Passive effectiveness, on the other hand, refers to cases in which mathematicians developed abstract branches of mathematics with absolutely no applications in mind; yet decades, or sometimes centuries later, physicists discovered that those theories provided necessary mathematical underpinnings for physical phenomena. Examples of passive effectiveness abound. Mathematician Bernhard Riemann, for example, discussed in the 1850s new types of geometries that you would encounter on surfaces curved like a sphere or a saddle (instead of the flat plane geometry that we learn in school). Then, when Einstein formulated his theory of General Relativity (in 1915), Riemann’s geometries turned out to be precisely the tool he needed! More.
Follow UD News at Twitter!