From “Researchers Identify Mysterious Life Forms in the Extreme Deep Sea” (ScienceDaily, Oct. 24, 2011), we learn:
The researchers spotted the life forms at depths up to 10,641 meters (6.6 miles) within the Sirena Deep of the Mariana Trench. The previous depth record for xenophyophores was approximately 7,500 meters (4.7 miles) in the New Hebrides Trench, although sightings in the deepest portion of the Mariana Trench have been reported. Scientists say xenophyophores are the largest individual cells in existence. Recent studies indicate that by trapping particles from the water, xenophyophores can concentrate high levels of lead, uranium and mercury and are thus likely highly resistant to large doses of heavy metals. They also are well suited to a life of darkness, low temperature and high pressure in the deep sea.
“The research of Scripps Professor Lisa Levin (deep-sea biologist) has demonstrated that these organisms play host to diverse multicellular organisms,” said Doug Bartlett, the Scripps marine microbiologist who organized the Mariana Trench expedition. “Thus the identification of these gigantic cells in one of the deepest marine environments on the planet opens up a whole new habitat for further study of biodiversity, biotechnological potential and extreme environment adaptation.”
Like the oceanographer said at Science North in 2009: We don’t know what’s in most of the ocean. No need to expect the same old.
This is interesting:
notes;
Interestingly, while the photo-synthetic bacteria were reducing greenhouse gases and producing oxygen, and metal, and minerals, which would all be of benefit to modern man, ‘sulfate-reducing’ bacteria were also producing their own natural resources which would be very useful to modern man. Sulfate-reducing bacteria helped prepare the earth for advanced life by detoxifying the primeval earth and oceans of poisonous levels of heavy metals while depositing them as relatively inert metal ores. Metal ores which are very useful for modern man, as well as fairly easy for man to extract today (mercury, cadmium, zinc, cobalt, arsenic, chromate, tellurium and copper to name a few). To this day, sulfate-reducing bacteria maintain an essential minimal level of these heavy metals in the ecosystem which are high enough so as to be available to the biological systems of the higher life forms that need them yet low enough so as not to be poisonous to those very same higher life forms.
Man has only recently caught on to harnessing the ancient detoxification ability of bacteria to cleanup his accidental toxic spills, as well as his toxic waste, from industry:
As a side note to this, recently bacteria surprised scientists by their ability to quickly detoxify the millions of barrels of oil spilled in the Gulf of Mexico:
further note:
Clearly many, if not all, of these metal ores and minerals laid down by these sulfate-reducing bacteria, as well as laid down by the biogeochemistry of more complex life, as well as laid down by finely-tuned geological conditions throughout the early history of the earth, have many unique properties which are crucial for technologically advanced life, and are thus indispensable to man’s rise above the stone age to the advanced ‘space-age’ technology of modern civilization.
It is also interesting to note just how finely tuned the detoxification of ‘poisonous’ metals and elements is: