Review Of The Eighth Chapter Of Signature In The Cell by Stephen Meyer
ISBN: 9780061894206; Imprint: Harper One
In the middle ages, Moses Maimonides debated heavily with Islamic philosophers over the Aristotlean interpretation of the universe. By looking at the stars and seeing their irregular pattern in the heavens, he concluded that only design could have generated the star arrangements he observed (1). In the process he ruled out necessity and the Epicurean ideology of chance. Centuries later Isaac Newton similarly opted for design as the best explanation for the origins of our solar system. Writing in his General Scholium for example Newton left us with no doubt over where his focus lay:
“This most beautiful system of sun, planets, and comets could only proceed from the counsel and dominion of an intelligent and powerful Being” (2).
Still, with the revolutions in thought brought forth by the likes of Pierre Simon Laplace and of course later Charles Darwin, the stage was set for chance and necessity to become the only players permissible in scientific discourse (1). Today science operates under the conviction that the material world “is all there is, and that chance and impersonal natural law alone explain, indeed must explain, its existence” (3).
So, what of chance? When statisticians refer to chance events what they really mean is that the exact combination of physical factors that cause these events are so complex that their occurrence cannot be reasonably predicted. Implicit in an appeal to chance is the negation of any sort of law-like necessity or Maimonidean-style recourse to design. On the flip side, Stephen Meyer reminds us in Signature In The Cell that that chance hypotheses can be eliminated when “a series of events occurs that deviates too greatly from an expected statistical distribution” (p.180).
A casino player winning 100 bets consecutively while spinning a roulette wheel is an obvious example of such a deviation. But low probability in itself is not enough for detecting design. Indeed fundamental to this particular non-chance alternative is the recognition of some sort of discernible pattern- 100 wins on a roulette wheel for example- that compels us to suspect that an intelligence somewhere is directing the outcome.
For Meyer such insights were seeded through conversations he held with philosopher William Dembski in the hallways of academia as he grappled with questions relating to life’s origins. Much to the chagrin of the Darwin-faithful, today Dembski not only contends that design, “is a legitimate and fundamental mode of scientific explanation on a par with chance and necessity” but also argues that there exists a set of criteria for reliably detecting design in biology (1).
Pattern discernment, Dembski asseverates, can be retrospectively applied; that is, to events that have already occurred. Indeed as any spy buff will attest, cryptoanalysts routinely decode signals only after these signals have been generated and transmitted. Intelligent involvement in such cases can either be ruled in or out through a thorough examination of the available probabilistic resources (4).
In Signature In The Cell Meyer builds on Dembski’s cornerstone case and uses a seemingly non-ending supply of illustrations to firm up his own supportive arguments. But the reader is nevertheless left pondering over what relevance such illustrations have to the matter at hand, namely demonstrating that the origin of life requires more than just chance. Meyer meticulously alleviates such concerns with a component-by-component breakdown of the probabilistic resources of our cosmic landscape. He writes:
“There are a limited number of opportunities for any given event to occur in the entire history of the universe. Dembski was able to calculate this number by simply multiplying the three relevant factors together: the number or elementary particles (1080) times the number of seconds since the big bang (1016) times the number of possible interactions per second (1043). His calculation fixed the total number of events that could have taken place in the observable universe since the origin of the universe at 10130” (pp.216-217).
Applying his calculations on limits to biology Meyer notes:
“the probability of producing a single 150 amino acid protein by chance stands at about 1 in 10164. Thus for each functional sequence of 150 amino acids there are at least 10164 other possible non-functional sequences of the same length…Unfortunately that number vastly exceeds the most optimistic estimate of the probabilistic resources of the entire universe- that is the number of events that have occurred since the beginning of its existence” (p.217).
While such a rationale has already been advanced in the peer-reviewed literature (5), it is as profoundly relevant today as it was in its original context. Those design heisters who acrimoniously steal intelligent design away from the realm of biology do so at a tremendous cost to us all. Intelligent design is after all not ‘pie in the sky’ story telling. It is rigorous science.
Literature Cited
1.William Dembski (2002), No Free Lunch: Why Specified Complexity Cannot Be Purchased Without Intelligence, Rowman & Littlefield Publishers, Inc, Lanham, Maryland, pp.1-3
2. Nancy R. Pearcey and Charles B. Thaxton (1994), The Soul of Science: Christian Faith and Natural Philosophy; Crossway Books; Wheaton, Illinois, p.91
3. Guillermo Gonzalez and Jay Richards (2004), The Privileged Planet, How Our Place In The Cosmos Is Designed For Discovery, Regnery Publishing Inc, Washington D.C, New York, p.224
4. For a review of probability as relates to the biological context see Robert Deyes and John Calvert (2009), We Have No Excuse: A Scientific Case for Relating Life to Mind, Intelligent Design Network, See http://www.intelligentdesignnetwork.org/We_have_no_excuse.pdf
5. Stephen C. Meyer (2004), The Origin Of Biological Information And The Higher Taxonomic Categories, Proceedings of the Biological Society of Washington, Volume 117, pp. 213-239