- Share
-
-
arroba
The paywalled paper is “Integration of syntactic and semantic properties of the DNA code reveals chromosomes as thermodynamic machines converting energy into information” by Georgi Muskhelishvili and Andrew Travers. Scott Minnich at U Idaho notes in the Christian Scientific Society’s online newsletter that the paper
… makes several very interesting points. First, the digital information of individual genes (semantics) is dependent on the the intergenic regions (as we know) which is like analog information (syntax). Both types of information are co-dependent and self-referential but you can’t get syntax from semantics. As the authors state, “thus the holistic approach assumes self-referentiality (completeness of the contained information and full consistency of the the different codes) as an irreducible organizational complexity of the genetic regulation system of any cell”. In short, the linear DNA sequence contains both types of information. Second, More.
Pitt U Physicist David Snoke comments,
Three comments: 1) the authors are “serious” scientists, not fringe people. 2) They are using “irreducible complexity” in the same sense as Behe. This is not a case of accidental use of the same phrase to mean something different. Their term “holistic” is another way of saying the same thing, that the system requires all of its parts to work. 3) This “holistic” approach is one that is becoming common in systems biology. I have a paper coming out on that, in the works.
Thoughts? Can all these people be suppressed at once with no noise?
Abstract Understanding genetic regulation is a problem of fundamental importance. Recent studies have made it increasingly evident that, whereas the cellular genetic regulation system embodies multiple disparate elements engaged in numerous interactions, the central issue is the genuine function of the DNA molecule as information carrier. Compelling evidence suggests that the DNA, in addition to the digital information of the linear genetic code (the semantics), encodes equally important continuous, or analog, information that specifies the structural dynamics and configuration (the syntax) of the polymer. These two DNA information types are intrinsically coupled in the primary sequence organisation, and this coupling is directly relevant to regulation of the genetic function. In this review, we emphasise the critical need of holistic integration of the DNA information as a prerequisite for understanding the organisational complexity of the genetic regulation system.
Hat tip: Daniel Quinones
Follow UD News at Twitter!