Uncommon Descent Serving The Intelligent Design Community

Transcription regulation: a miracle of engineering

Categories
Intelligent Design
Share
Facebook
Twitter/X
LinkedIn
Flipboard
Print
Email

Transcription is certainly the essential node in the complex network of procedures and regulations that control the many activities of living cells. Understanding how it works is a fascinating adventure in the world of design and engineering. The issue is huge and complex, but I will try to give here a simple (but probably not too brief) outline of its main features, always from a design perspective.

 


Fig. 1 A simple and effective summary of a gene regulatory network

 

Introduction: where is the information?

One of the greatest mysteries in cell life is how the information stored in the cell itself can dynamically control the many changes that continuosly take place in living cells and in living beings. So, the first question is: what is this information, and where is it stored?

Of course, the classical answer is that it is in DNA, and in particular in protein coding genes. But we know that today that answer is not enough.

Indeed, a cell is an ever changing reality. If we take a cell, any cell, at some specific time t, that cell is the repository of a lot of information, at that moment and in that state. That information can be grossly divided in (at least) two different compartments:

a) Genomic information, which is stored in the sequence of nucleotides in the genome. This information is relatively stable and, with a few important exceptions, is the same in all the cells of a multicellular being.

b) Non genomic information. This includes all  the specific configurations which are present in that cell at time t, and in particular all epigenetic information (configurations that modify the state of the genomic information) and, more generally, all configurations in the cell. The main components of this dynamic information are the cell transcriptome and proteome at time t and the sum total of its chromatin configurations.

Now, let’s try to imagine the flow of dynamic information in the cell as a continuous interaction between these two big levels of organization:

  1. The transcriptome/proteome is the sum total of all proteins and RNAs (and maybe other functional molecules) that are present in the cell at time t, and which define what the cell is and does at that time.
  2. The chromatin configuration can be considered as a special “reading” of the genomic information, individualized by many levels of epigenetic control. IOWs, while the genomic information is more or less the same in all cells, it can be expressed in myriads of different ways, according to the chromatin organization at that moment, which determines what genes or parts of the genome are “available” at time t in the cell. In this way, one genomic sequence can be read in multiple different ways, with different functional meanings and effects. So, if we just stick to protein coding genes, the 20000 genes in the human genome are available only partially in each cell at each moment, and that allows for a myriad of combinatorial dynamic “readings” of the one stable genome.

Fig. 2 shows the general form of these concepts.

 

Fig. 2

 

Two important points:

  • The interaction between transcriptome/proteome and chromatin configuration is, indeed, an interaction. The transcriptome/proteome determines the chromatin configuration in many ways: for example, changing the methylation of DNA (DNA methyltransferases); or modifying the post-trascriptional modifications (methylation, acetylation, ubiquitination and others) of histones (covalent histone-modifying complexes), or creating new loops in chromatin (transcription factors); or directly remodeling chromatin itself (ATP-dependent chromatin remodeling complexes). In the same way, any modification of the chromatin landscape immediately influences what the existing transcriptome/proteome is and can do, because it directly changes the transcriptome/proteome as a result of the changes in gene transcription. Of course, this can modify the availability of genes, promoters, enhancers, and regulatory regions in general at chromatin level. That’s the meaning of the two big red arrows connecting, at each stage, the two levels of regulation. The same concept is evident in Fig. 1, which shows how the output of transcription has immediate, complex and constant feedback on transcription regulation itself.
  • As a result of the continuous changes in the trascriptome/proteome and in chromatin configurations, cell states continuously change in time (yellow arrows). However, this continuous flow of different functional states in each cell can have two different meanings, as shown by the two alternative big brown arrows on the right:
    •  Cells can change dramatically, following a definite developmental pathaway: that’s what happens in cell differentiation, for example from a haematopoietic stem cell to differentiated blood cells like lymphocytes, monocytes, neutrophils, and so on. The end of the differetiation is the final differentiated cell, which is in a sense more “stable”, having reached its final intended “form”.
    • Those “stable” differentiated cells, however, are still in a continuous flow of informational change, which is still drawn by continuous modifications in the transcriptome/proteome and in chromatin configurations. Even if these changes are less dramatic, and do not change the basic identity of the differentiated cell, still they are necessary to allow adaptation to different contexts, for example varying messages from near cells or from the rest of the body, either hormonal, or neurologic, or other, or other stimuli from the environment (for example, metabolic conditions, stress, and so on), or even simply the adherence to circadian (or other) rythms. IOWs, “stable” cells are not stable at all: they change continuously, while retaining their basic cell identity, and those changes are, again, drawn by continuous modifications in the transcriptome/proteome and in the chromatin configurations of the cell.

Now, let’s have a look at the main components that make the whole process possible. I will mention only briefly the things that have been known for a long time, and will give more attention to the components for which there is some recent deeper understanding available.

We start with those components that are part of the DNA sequence itself, IOWs the genes themselves and those regions of DNA which are involved in their trancription regulation (cis-regulatory elements).

 

Cis elements

 

Genes and promoters.

Of course, genes are the oldest characters in this play. We have the 20000 protein coding genes in human genome, which represent about 1.5% of the whole genomic sequence of 3 billion base pairs. But we must certainly add the genes that code for non coding RNAs: at present, about 15000 genes for long non coding RNAs, and about 5000 genes for small non coding RNAs, and about 15000 pseudogenes. So, the concept of gene is now very different than in the past, and it includes many DNA sequences that have nothing to do with protein coding. Moreover, it is interesting to observe that many non protein coding genes, in particular those that code for lncRNAs, have a complex exon-intron structure, like protein coding genes, and undego splicing, and even alternative splicing. For a good recent review about lncRNAs, see here:

The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression

Let’s go to promoters. This is the simple definition (from Wikipedia):

In genetics, a promoter is a region of DNA that initiates transcription of a particular gene. Promoters are located near the transcription start sites of genes, on the same strand and upstream on the DNA (towards the 5′ region of the sense strand). Promoters can be about 100–1000 base pairs long.

A promoter includes:

  • The transcription start site (TSS), IOWs the point where transcription starts
  • A binding site for RNA polymerase
  • General transcription factors binding sites for , such as the TATA box and the BRE in eukaryotes
  • Other parts that can interact with different regulatory elements.

Promoters have been classified as  ‘focused’ or ‘sharp’ promoters (those that have a single, well-defined TSS), and  ‘dispersed’ or ‘broad’ promoters (those that have multiple closely spaced TSS that are used with similar frequency).

For a recent review of promoters and their features, see here:

Eukaryotic core promoters and the functional basis of transcription initiation

 

Enhancers

Enhancers are a fascinating, and still poorly understood, issue. Again, here is the definition from Wikipedia:

In genetics, an enhancer is a short (50–1500 bp) region of DNA that can be bound by proteins (activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcription factors. Enhancers are cis-acting. They can be located up to 1 Mbp (1,000,000 bp) away from the gene, upstream or downstream from the start site. There are hundreds of thousands of enhancers in the human genome. They are found in both prokaryotes and eukaryotes.

Enhancers are elusive things. The following paper:

Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells

reports a total of 201,802 identified promoters and 65,423 identified enhancers in humans, and similar numbers in mouse (this in 2015). But there are probably many more than that number.

Working with specific TFs, enhancers are the main responsibles of the formation of dynamic chromatin loops, as we will see later.

Here is a recent paper about human enhancers in different tissues:

Genome-wide Identification and Characterization of Enhancers Across 10 Human Tissues.

 

Abstract:

Background: Enhancers can act as cis-regulatory elements (CREs) to control development and cellular function by regulating gene expression in a tissue-specific and ubiquitous manner. However, the regulatory network and characteristic of different types of enhancers(e.g., transcribed/non-transcribed enhancers, tissue-specific/ubiquitous enhancers) across multiple tissues are still unclear. Results: Here, a total of 53,924 active enhancers and 10,307 enhancer-associated RNAs (eRNAs) in 10 tissues (adrenal, brain, breast, heart, liver, lung, ovary, placenta, skeletal muscle and kidney) were identified through the integration of histone modifications (H3K4me1, H3K27ac and H3K4me3) and DNase I hypersensitive sites (DHSs) data. Moreover, 40,101 tissue-specific enhancers (TS-Enh), 1,241 ubiquitously expressed enhancers (UE-Enh) as well as transcribed enhancers (T-Enh), including 7,727 unidirectionally transcribed enhancers (1D-Enh) and 1,215 bidirectionally transcribed enhancers (2D-Enh) were defined in 10 tissues. The results show that enhancers exhibited high GC content, genomic variants and transcription factor binding sites (TFBS) enrichment in all tissues. These characteristics were significantly different between TS-Enh and UE-Enh, T-Enh and NT-Enh, 2D-Enh and 1D-Enh. Furt hermore, the results showed that enhancers obviously upregulate the expression of adjacent target genes which were remarkably correlated with the functions of corresponding tissues. Finally, a free user-friendly tissue-specific enhancer database, TiED (http://lcbb.swjtu.edu.cn/TiED), has been built to store, visualize, and confer these results. Conclusion: Genome-wide analysis of the regulatory network and characteristic of various types of enhancers showed that enhancers associated with TFs, eRNAs and target genes appeared in tissue specificity and function across different tissues.

Promoter and enhancer associated RNAs

A very interesting point which has been recently clarified is that both promoters and enhancers, when active, are transcribed. IOWs, beyond their classical action as cis regulatory elements (DNA sequences that bind trans factors), they also generate specific non coding RNAs. They are called respectively Promoter-associated RNAs (PARs) and Enhancer RNAs (eRNAs). They can be short or long, and both types seem to be functional in transcription regulation.

Here is a recent paper that reciews what is known of PARs, and their “cousins” terminus-associated RNAs (TARs):

Classification of Transcription Boundary-Associated RNAs (TBARs) in Animals and Plants

Here, instead, is a recent review about eRNAS:

Enhancer RNAs (eRNAs): New Insights into Gene Transcription and Disease Treatment

Abstract:

Enhancers are cis-acting elements that have the ability to increase the expression of target genes. Recent studies have shown that enhancers can act as transcriptional units for the production of enhancer RNAs (eRNAs), which are hallmarks of activity enhancers and are involved in the regulation of gene transcription. The in-depth study of eRNAs is of great significance for us to better understand enhancer function and transcriptional regulation in various diseases. Therefore, eRNAs may be a potential therapeutic target for diseases. Here, we review the current knowledge of the characteristics of eRNAs, the molecular mechanisms of eRNAs action, as well as diseases related to dysregulation of eRNAs.

 

So, this is a brief description of the essential cis regulatory elements. Let’s go now to trans regulatory elements, IOWs those molecules that are not part of the DNA sequence, but work on it to regulate gene transcription.

 

Trans elements

The first group of trans acting tools includes those molecules that are the same for all transcriptions. They are “general” transcription tools.

I will start with a brief mention of RNA polymerase, which is not a regulatory element, but rather the true effector of transcription:

 

DNA-directed RNA polymerases

This is a family of enzymes found in all living organisms. They open the double-stranded DNA and implement the transciption, synthesizing RNA from the DNA template.

I don’t want to deal in detail with this complex subject: suffice it to say, for the moment, that RNA polymerases are very big and very complex proteins, with some basic information shared fron prokaryotes to multicellular organisms. In humans, RNA polymerase II is the one responsible of the transcription of protein coding mRMAs, and of some non coding RNAs, including many lncRNAs. Just as an example, human RNA Pol II is a multiprotein complex of 12 subunits, for a sum total of more than 4500 AAs.

 

Now, let’s go to the general regulatory elements:

General TFs

Grneral TFs are transcription factors that bind to promoter to allow the start of transcription. They are called “general” because they are common to all transcriptions, while specific TFs act on specific genes.

In bacteria there is one general TF, the sigma factor, with different variants.

In archaea and in eukaryotes there are a few. In eukaryotes, there are six. The first that binds to the promoter is TFIID, a multiprotein factor which includes as its core the TBP (TATA binding protein, 339 AAs in humans), plus 14 additional subunits (TAFs), the biggest of which, TAF1, is 1872 AA long in humans. Four more general TFs bind sequencially the promoter. The sixth, TFIIA, is not required for basal transcription, but can stabilize the complex.

So, the initiation complex, bound to the promoter, is essentially made by RNA Pol II (or other) + the general TFs.

The following is a good review of the assembly of the initiation complex at the promoter:

Structural basis of transcription initiation by RNA polymerase II        (paywall)

I quote here the conclusions of the paper:

Conclusions and perspectives
The initiation of transcription at Pol II promoters is a very complex process in which dozens of polypeptides cooperate to recognize and open promoter DNA, locate the TSS and initiate pre-mRNA synthesis. Because of its large size and transient nature, the study of the Pol II initiation complex will continue to be a challenge for structural biologists. The first decade of work, which started in the 1990s, provided structures for many of the factors involved and several of their DNA complexes. The second decade of research provided structural information on Pol II complexes and led to models for how general transcription factors function. Over the next decade, we hope that a combination of structural biology methods will resolve many remaining questions on transcription initiation, and elucidate the mechanism of promoter opening and initial RNA synthesis, the remodelling of the transient protein–DNA interactions occurring at various stages of initiation, and the conformational changes underlying the allosteric activation of initiation and the transition from initiation to elongation. Important next steps include more detailed structural characterizations of TFIIH and the 25-subunit coactivator complex Mediator, not only in their free forms but also as parts of initiation complexes.

For the Mediator, see next section.

And here is another good paper about that:

Zooming in on Transcription Preinitiation

which has a very good Figure summarizing it:

Fig. 3: From Kapil Gupta, Duygu Sari-Ak, Matthias Haffke, Simon Trowitzsch, Imre Berger: Zooming in on Transcription Preinitiation, https://doi.org/10.1016/j.jmb.2016.04.003  Creative Commons license

Transcription PIC. Class II gene transcription is brought about by (in humans) over a hundred polypeptides assembling on the core promoter of protein-encoding genes, which then give rise to messenger RNA. A PIC on a core promoter is shown in a schematic representation (adapted from Ref. [5]). PIC contains, in addition to promoter DNA, the GTFs TFIIA, B, D, E, F, and H, and RNA Pol II. PIC assembly is thought to occur in a highly regulated, stepwise fashion (top). TFIID is among the first GTFs to bind the core promoter via its TBP subunit. Nucleosomes at transcription start sites contribute to PIC assembly, mediated by signaling through epigenetic marks on histone tails. The Mediator (not shown) is a further central multiprotein complex identified as a global transcriptional regulator. TATA, TATA-box DNA; BREu, B recognition element upstream; BREd, B recognition element downstream; Inr, Initiator; DPE, Down-stream promoter element.

 

The Mediator complex

The Mediator complex is the third “general” component of transcription initiation, together with RNA Pol II and the general TFs. However, it is a really amazing structure for many specific reasons.

  • First of all, it is really, really complex. It is a multiprotein structure which, in metazoan, is composed of about 25 different subunits, while it is slightly “simpler” in yeast (up to 21 subunits). Here is a very simplified scheme of the structure:

 

Fig. 4:  Diagram of mediator with cyclin-dependent kinase module.  By original figure: Tóth-Petróczy Á, Oldfield CJ, Simon I, Takagi Y, Dunker AK, Uversky VN, et al.editing: Dennis Pietras, Buffalo, NY, USA [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons  https://commons.wikimedia.org/wiki/File:Mediator4TC.jpg

 

  • Second, and most important, is the fact that, while it is certainly a “general” factor, because it is involved in the transcription of almost all genes, its functions remain still poorly understood, and it is very likely that it works as an “integrration hub” which transmits and modulates many gene-specific signals (for example, those from specific TFs) to the initiation complex. In that sense, the name “mediator” could not be more appropriate: a structure which mediates between the general complex transcription mechansim and the even more complex regulatory signals coming from the enhancer-specific TFs network, and probably from other sources.
  • Third, this seems to be an essentially eukaryotic structure, while RNA POL II, TFs, promoters and enhancers, while reaching their full complexity only in eukaryotes, are in part based on functions already present in prokaryotes. The proteins that make the Mediator structure seem to be absent in prokaryotes (as far as I can say, I have checked only a few of them). Moreover,  many of them show a definite information jump in vertebrates, as we have seen in important regulatory proteins.

Fig. 5 shows, for example, the evolutionari history of 4 of the biggest proteins in the Mediator complex, in terms, as usual, of human conserved information. The big information jump in vertebrates is evident in all of them.

Fig. 5

Here is a paper (2010) about Mediator and its functions:

The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation

Abstract:

The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.

Fig. 2 in the paper gives a more detailed idea of the general structure of the complex, with its typical section, head, middle, tail, and accessories.

This more recent paper (2015) is a good review of what is known about the Mediator complex, and strongly details the evidence in favor of its key role in integrating regulation signals (especially from enhancers and specific TFs) and delivering those signals to the initiation complex.

The Mediator complex: a central integrator of transcription

In Box 3 of that paper you can find a good illustration of the pre-initiation complex, including Mediator. Fig. 3 is a simple summary of the main actors in transcription, and it introduces also thet looping created by the interaction between enhancers/specific TFs on one part, and promoter/initiation complex on the other, that we are going to discuss next. It also introduces another important actor, cohesin, which will also be discussed.

Finally, this very recent paper (2018) is an example of the functional relevance of Mediator, as shown by its involvement in human neurologic diseases:

The power of the Mediator complex-Expanding the genetic architecture and phenotypic spectrum of MED12-related disorders.

Abstract:

MED12 is a member of the large Mediator complex that controls cell growth, development, and differentiation. Mutations in MED12 disrupt neuronal gene expression and lead to at least three distinct X-linked intellectual disability syndromes (FG, Lujan-Fryns, and Ohdo). Here, we describe six families with missense variants in MED12 (p.(Arg815Gln), p.(Val954Gly), p.(Glu1091Lys), p.(Arg1295Cys), p.(Pro1371Ser), and p.(Arg1148His), the latter being first reported in affected females) associated with a continuum of symptoms rather than distinct syndromes. The variants expanded the genetic architecture and phenotypic spectrum of MED12-related disorders. New clinical symptoms included brachycephaly, anteverted nares, bulbous nasal tip, prognathism, deep set eyes, and single palmar crease. We showed that MED12 variants, initially implicated in X-linked recessive disorders in males, may predict a potential risk for phenotypic expression in females, with no correlation of the X chromosome inactivation pattern in blood cells. Molecular modeling (Yasara Structure) performed to model the functional effects of the variants strongly supported the pathogenic character of the variants examined. We showed that molecular modeling is a useful method for in silico testing of the potential functional effects of MED12 variants and thus can be a valuable addition to the interpretation of the clinical and genetic findings.

By the way, Med12 is one of the 4 proteins shown in Fig. 5 in this OP: it is 2177 AAs long, and exhibits a huge information jump in vertebrates.

 

Specific TFs

OK, let’s abandon, for the moment, the promoter and its initiation complex, and consider what happens at the distant enhancer site. Here, in some apparently unrelated place in the genome, which can be even 1 Mbp away, sometimes even on other chromosomes, the enhancer/specific TFs interaction takes place.

Now, we have already seen the general TFs that work at the promoter site. However fascinating, they are 6 in total (in metazoa).

But what about specific TFs?

Specific TFs are the molecules that are the true center of transcription regulation: they are the main regulators, even if of course they act together with all the other things we have described and are going to describe.

Here is a very recent reciew (2018):

The Human Transcription Factors

Abstract:

Transcription factors (TFs) recognize specific DNA sequences to control chromatin and transcription, forming a complex system that guides expression of the genome. Despite keen interest in understanding how TFs control gene expression, it remains challenging to determine how the precise genomic binding sites of TFs are specified and how TF binding ultimately relates to regulation of transcription. This review considers how TFs are identified and functionally characterized, principally through the lens of a catalog of over 1,600 likely human TFs and binding motifs for two-thirds of them. Major classes of human TFs differ markedly in their evolutionary trajectories and expression patterns, underscoring distinct functions. TFs likewise underlie many different aspects of human physiology, disease, and variation, highlighting the importance of continued effort to understand TF-mediated gene regulation.

The paper is paywalled, but for those who can access it, I would really recommend to read it.

TFs are a very deep subject, so I will just list a few points about them that seem particularly relevant here:

  • TFs are medium sized molecules. Median length in humans, for a set of 1613 TFs derived from the paper quoted above, is 501 AAs, and 50% of those TFs are in the 365-665 AAs range.
  • They are highly modular objects. In essence, almost all TFs are made of at least two components:
    • A highly conserved, well recognizable domain, called the DNA binding comain (DBD), which interacts with specific, short DNA motifs (usually 6-12 nucleotides).
      1. DBDs can be rather easily recognized and classified in families. There are about 100 known eukaryotic DBD types. Almost all known TFs contain at least one DBD, sometimes more than one. The most represented DBD families in humans are C2H2 zinc finger (more than 700), homeodomain (almost 200) and bHLH (more than 100). DBD domains are often rather short AA sequences: zinc fingers, for example, are about 23 AAs long (but they are usually present in multiple copies in the TF), while bHLH is about 50 AAs long, and homeodomains are about 60 AAs long. As said, they are usually old and very conserved sequences.
      2. DNA motifs are short nucleotide sequences (6-12 nucleotides), spread all over the genome. In total, over 500 motif specificity groups are present in humans. However, motifs are not at all specific or sufficient in determinining TF binding, and many other factors must cooperate to achieve and regulate the actual binding of a TF to a DNA motif.
    • At least one other sequence, which is usually longer and does not contain recognizable domains. These sequences are often highly disordered, are less conserved, and may have important regulatory functions. In some cases, other specific domains are present: for example, in the family of nuclear receptors, the TF shows, together with the DBD and the non domain sequence, a ligand domain which interacts with the hormone/molecule that conveys the signal.
  • There are a lot of them. The above quoted paper, probably the most recent about the issue, gives a total of 1639 proteins that are known or likely TFs in humans, but the list is almost certainly not complete. It is very likely that there are about 2000 TFs in humans, which is about 10% of protein coding genes. Of course, all these are specific TFs (except for the 6 general TFs mentioned earlier). So, this is probably the biggest regulatory network in the cell.
  • The way they work is still poorly understood, except of course for the DNA binding. It is rather certain that they usually work in groups, combinatorially, and by recruiting also other (non TF) proteins or molecules. The above mentioned paper lists many possible mechanisms of action and regulation for TF activity:
    1. Cooperative binding: TFs often aid each other in binding to DNA: that can imply also forming homodimers or higher order structures.
    2. Interaction and competition with nucleosomes, in some cases by recruiting ATP-dependent chromatin remodelers and other TFs
    3. Recruiting of cofactors (‘‘coactivators’’ and ‘‘corepressors’’) which are frequently large multi-subunit protein complexes or multi-domain proteins that regulate transcription via several mechanisms. The ligand-binding domains of nuclear hormone receptor subclass of TFs. already quoted before, are a special case of that.
    4. Exploiting unstructured regions and/or DBDs to interact with cofactors
    5. It is also wrong to classify individual TFs as “activators” or “repressors” I quote from the paper: Because effects on transcription are so frequently context dependent, more precise terminology may be warranted, in general— for example, reflecting the biochemical activities of TFsand their cofactors. On a global level, however, there is no comprehensive catalog of cofactors recruited by TFs. Moreover, the biochemical functions required for gene activation orcommunication between enhancers and promoters remain largely unknown
  • As a class, their evolutionary history in terms of human conserved information is well comparable to thne mean pattern of the whole human genome. In particular, they do not ehibit, as a class, any special information jump in vertebrates (mean = 0.293 baa in TFs vs 0.288 baa in the whole human proteome).

Fig. 6 shows the mean evolutionary history of 1613 human TFs, in terms of baa of human conserved information, as compared to the mean values for the whole human proteome:

 

Fig. 6

 

So, in brief: one of more specific TFs bind some specific enhancer in some part of the genome, and the specific big structure at the enhancer (enhancer + specific TFs + cofactors) in some way binds the general big structure at the promoter (promoter + RNA Pol II + general TFs + Mediator), and, probably acting on the Mediator complex, regulates the activity of the RNA polymerase and therefore the rate of transcription.

The interaction between a distant enhancer and the promoter has one important and immediate consequence: the chromatin fiber bends, and forms a specific loop (Fig. 7):

 

Fig. 7: Diagram of gene transcription factors

By Kelvin13 [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], from Wikimedia Commons    https://commons.wikimedia.org/wiki/File:Transcription_Factors.svg

And, just as a final bonus about trans regulation of transcription, guess what is implied too? Of course, long non coding RNAs! See here:

Noncoding RNAs: Regulators of the Mammalian Transcription Machinery

Abstract
Transcription by RNA polymerase II (Pol II) is required to produce mRNAs and some noncoding RNAs (ncRNAs) within mammalian cells. This coordinated process is precisely regulated by multiple factors, including many recently discovered ncRNAs. In this perspective, we will discuss newly identified ncRNAs that facilitate DNA looping, regulate transcription factor binding, mediate promoter-proximal pausing of Pol II, and/or interact with Pol II to modulate transcription. Moreover, we will discuss new roles for ncRNAs, as well as a novel Pol II RNA-dependent RNA polymerase activity that regulates an ncRNA inhibitor of transcription. As the multifaceted nature of ncRNAs continues to be revealed, we believe that many more ncRNA species and functions will be discovered.

 

Finally, we have to consider the role of chromatin states.

Chromatin states and epigenetics

Chromatin accessibility

For all those things to happen, one condition must be satisfied: the DNA sequences implied, IOWs the gene, promoter and specific enhancers, must be reasonably accessible.

The point is that chromatin in interphase is in different states and different 3D configurations and different spacial distributions in the nucleus, especially in relation to the nuclear lamina. In general, heterochromatin is the condensed form, functionally inactive, and is mainly associated with the nuclear lamina (the perifephery), while euchromatin, the lightly packed  and transcriptionally active form, with its trancriptional loops, is more in the center of the nucleus.

However, things are not so simple: chromatin states are not a binary condition (heterochromatin/euchromatin), and they are extremely dynamic: the general map of chromatin states is different from cell to cell, and in the same cell from time to time.

One way to measure chromatin accessibility (IOWs, to map what parts of the genome are accessible to transcription in a cell at a certain time) is to use a test that directly binds or marks in some way the accessible regions. There are many such tests, and the most commonly used are DNase-seq (DNase I cuts only at the level of accessible chromatin) and ATAC-seq (insertions by the Tn5 transposon are restricted to accessible chrmatin). ATAC-seq has also been applied at the single cell level, and the results are described in this wonderful paper:

A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility

Summary:
We applied a combinatorial indexing assay, sci-ATAC-seq, to profile genome-wide chromatin accessibility in ∼100,000 single cells from 13 adult mouse tissues. We identify 85 distinct patterns of chromatin accessibility, most of which can be assigned to cell types, and ∼400,000 differentially accessible elements. We use these data to link regulatory elements to their target genes, to define the transcription factor grammar specifying each cell type, and to discover in vivo correlates of heterogeneity in accessibility within cell types. We develop a technique for mapping single cell gene expression data to single-cell chromatin accessibility data, facilitating the comparison of atlases. By intersecting mouse chromatin accessibility with human genome-wide association summary statistics, we identify cell-type-specific enrichments of the heritability signal for hundreds of complex traits. These data define the in vivo landscape of the regulatory genome for common mammalian cell types at single-cell resolution.
That shows howt cell states and cell types can be well differentiated by mapping chromatin accessibility.

Epigenetic states

But what makes different parts of chromatin more or less accessible?
The answer is: epigenetic regulations.
I will discuss very briefly DNA methilation, which takes place at cytosine or adenine, but mainly at cytosine when it is followed by a guanine (so called CpG dinucleotide). The subject is very complex, and I will not go into details. Suffice it to say that methylation at CpGs has usually a repressive effect on DNA (IOWs, methylated DNA is not active). The following figure shows how unmethylated CpG islands are usually found at promoters or other active regions, while methylated CpGs correspond to inactive segments, for example inactivated transposable elements.
Fig. 8  DNA methylation landscape   By Mariuswalter [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons https://commons.wikimedia.org/wiki/File:DNAme_landscape.png
Let’s go now to post-transcriptional modifications (PTMs) of histones. This is certainly the moast relevant epigenetic level of transcription regulation.
In brief, histones have “tails” that can be modified by attaching various kinds of groups to them. So, each of the four histone types in the nucleosome (usually H2A, H2B, H3 and H4) can be methylated or polymethilated, acetylated, phosphorilated, ubiquinated, sumoylated, biotinylated and many other things, at different aminoacid sites, usually lysines or arginines. The combinatorial result is that more than 150 different histone PTMs have been described.
However, methilations and acetylations are the most studied. Histone H3 is the most involved in current studies, and methylations and acetylations are the modifications that have been better analyzed..
The term “histone code” refers in a general way to the sum total of these different modifications and of their effects on chromatin state and transcription. However, many aspect of these complex processes are still poorly understood.
In general, the best known PTMs are classified as having an effect of transcription activation or repression. Acetylations are mostly activating, methylation can be either activating or repressing. A good table of the main histone PTMs can be found here:
Now, some of these modifications have been mapped genome-wide in different types of cells. Their combinatorial aggregation can rather well predict different functional states of different parts of the genome and of chromatin.
For example, the following paper:

uses 9 different histone marks, 5 methilations and 2 acetylations of histone H3, 1 methylation of histone H4 andthe mapping of CTCF (see later) to map 30 different states in the genome of 3 different types of human cells. For example, you can see in Figure 2a the 30 states (N1-30) and the 14 known transcriptional states that they are related to (the color code on the left). So, for example, state N8, which corresponds to the brown color code of “poised enhancer“, is marked by high expression of H3K27me3 (IOWs trimethylation of lysine 27 on histone H3) and low expression of H4K20me1 (IOWs monomethylation of lysine 20 on histone H4). The first modification has a meaning of transcriptional repression, while the second is a marker of transcriptional activation. IOWs, these nucleosomes are pre-activated, but “poised”. A similar situation can be observed in state N7, corresponding to “bivalent promoter“, where the repressive mark of H3K27me3 is associated to mono, di and trimethylation of lysine 4, always on histone H3, which are activating signals. These bivalent conditions, both for promoters and enhancers, are usually found in stem cells, where many genes are in a “pre-activated state”, momentarily blocked by the repressive signal, but ready to be activated for differentiation.

This is just to give an idea. So, this kind of analysis can well predict some of the results of the already mentioned Chromatin accessibility tests, and is also well related to the investigation of chromatin 3D configurations, which we will discuss in next section.

The following video is a good and simple review of the main aspects of the histone code.

 

 

 

But how are these histone modifications achieved?

Again, each of them is the result of very complex pathways, many of them still poorly understood.

For example, H3K4me3, one of the main activating marks, is achieved by a very complex multi-protein complex, involving at least 10 different proteins, some of them really big (for example, MLL2, 5537 AAs long). Moreover, the different pathways that implement different marks obviously exhibit complex crosstalks, creating intricate networks. Moreover, those pathways are not only writers of histone marks, but also readers of them: indeed, the modifictions effected are always determining by the reading of already existing modification. And, of course, there ae also eraser proteins.

All these concepts are dealed in some detail in the following paper:

The interplay of histone modifications – writers that read

A final and important question is: how do histone modifications implement their effects, IOWs the chromatin modifications that imply activation or repression of the genes? Unfortunately, this is not well understood. But:

  • For some modificaions, especially acetylation, part of the effect can probably be ascribed to the direct biochemiacal effect of the modification on the histone itself
  • Most effects, however, are probably implemented thorugh the recruitement  by the histone modification, often in combinatorial manner, of other “reader” proteins, who are responsible, directly or indirectly, of the activation or repression effect

The second modality is the foundation for the concept of histone code: in that sense, histone marks work as signals of a symbolic code, whose effects in most cases are mediated by complex networks of proteins which can write, read or erase the signals.

 

3D configuration of Chromatin

As said, one the final effects of epigenetic markers, either DNA methylation or histone modifications, is the chenge in 3D configuration of chromatin, which in turn is related to chromatin accessibility and therefore to transcription regulation.

This is, again, e very deep and complex issue. There are specific techniques to study chromatin configuration in space, which are independent from the mapping of chromatin accessibility and of epigenetic markers that we have already discussed. The most used are chromosome conformation capture(3C) and genome-wide 3C(Hi-C). Essentially, these techniques are based on specific procedures of fixation and digestion of chromatin that preserve chromatin loops and allow to analyze them and therefore the associations between distant genomic sites (IOWs, enhancer promoter associations) in specific cells and in specific cell states.

Again to make it brief, chromatin topology depends essentially on at least two big factors:

  • The generation of specific loops throughout the genome because of enhancer-promoter associations
  • The interactions of chromatin with the nuclear lamina

As a result of those, and other, factors, chromatin generates different levels of topologic organiazion, which can be described, in a very gross simplification, as follows, going from simpler to more complex structures:

  1. Local loops
  2. Topologically associating domains (TADs): This are bigger regions that delimit and isolate sets of specific interation loops. They can correspond to the idea of isolated “trancription factories”. TADs are separated, at genomic level, by specific insulators (see later)
  3. Lamina associated domains (LADs and Nucleolus associated domains (NADs): these correspond usually to mainly inactive chromatin regions
  4. Chromosomal territories, which are regions of the nucleus preferentially occupied by particular chromosomes
  5. A and B nuclear compartments: at higher level, chromatin in the nucleus seems to be divied into two gross compartments: the A compartment is mainly formed by active chrmain, the B compartment by repressed chromatin

Figure 9 shows a simple representation of some of these concepts.

 

Fig. 9  A graphical representation of an insulated neighborhood with one active enhancer and gene with corresponding enhancer-gene loop and CTCF/cohesin anchor loop. By Angg!ng [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons   https://commons.wikimedia.org/wiki/File:InsulatedNeighborhood.svg

The concept of TAD is particularly interesting, because TADs are insulated units of transcription: many different enhancer-promoter interactions (and therefore loops) can take place inside a TAD, but not usually between one TAD and another one. This happens because TADs are separated by strong insulators.

A very good summary about TADs can be found in the following paper:

Minor Loops in Major Folds: Enhancer–Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease

This is taken from Fig. 1 in that paper, and gives a good idea of what TADs are:

 

 

 

Fig. 10: Structural organization of chromatin
(A) Chromosomes within an interphase diploid eukaryotic nucleus are found to occupy specific nuclear spaces, termed chromosomal territories.
(B) Each chromosome is subdivided into topological associated domains (TAD) as found in Hi-C studies. TADs with repressed transcriptional activity tend to be associated with the nuclear lamina (dashed inner nuclear membrane and its associated structures), while active TADs tend to reside more in the nuclear interior. Each TAD is flanked by regions having low interaction frequencies, as determined by Hi-C, that are called TAD boundaries (purple hexagon).
(C) An example of an active TAD with several interactions between distal regulatory elements and genes within it.

Source: Matharu, Navneet (2015-12-03). “Minor Loops in Major Folds: Enhancer–Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease“. PLOS Genetics 11 (12): e1005640. DOI:10.1371/journal.pgen.1005640PMID 26632825PMCPMC4669122ISSN 1553-7404.

Author: Navneet Matharu, Nadav Ahituv

By Navneet Matharu, Nadav Ahituv [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

There is, of course, a good correlation between the three types of anaysis and genomic mapping that we have described::

  • Chromatin accessibility mapping
  • Epigenetic marks
  • Chromatin topology studies

However, these three approaches are different, even if strongly related. They are not measuring the same thing, but different things that contribute to the same final scenario.

 

CTCF and Cohesin

But what are these insulators, the boundaries that separate TADs one from another?

While the nature of insulators can be complex and varies somewhat from species to species, in mammals the main proteins responsible for that function are CTCF and cohesin.

CTCF is indeed a TF, a zinc finger protein with repressive functions. While it has other important roles, it is the major marker of TAD insulators in mammals. It is 727 AAs long in humans, and its evolutionary history shows a definite information jump in vertebrates (0.799 baa, 581 bits) as shown in Fig. 5, which is definitely uncommon for a TF.

 

We have already encountered CTCF as one of the epigenetic markers used in histone code mapping. Its importance in transcription regulation and in many other important cell functions cannot be overemphasized.

Cohesin is a multiprotein complex which forms a ring around the double stranded DNA, and contributes to a lot of important stabilizations of the DNA fiber in different situations, especially mitosis and meiosis. But we know now that it is also a major actor in insulating TADs, as can be seen in Fig 4, and in regulating chromatin topology. Cohesin and its interacting proteins, like MAU2 and NIPBL, are a fascinating and extremely complex issue of their own, so I just mention them here because otherwise this already too long post would become unacceptably long. However, I suggest here a final, very recent review about these issues, for those interested:

Forces driving the three‐dimensional folding of eukaryotic genomes

Abstract:

The last decade has radically renewed our understanding of higher order chromatin folding in the eukaryotic nucleus. As a result, most current models are in support of a mostly hierarchical and relatively stable folding of chromosomes dividing chromosomal territories into A‐ (active) and B‐ (inactive) compartments, which are then further partitioned into topologically associating domains (TADs), each of which is made up from multiple loops stabilized mainly by the CTCF and cohesin chromatin‐binding complexes. Nonetheless, the structure‐to‐function relationship of eukaryotic genomes is still not well understood. Here, we focus on recent work highlighting the biophysical and regulatory forces that contribute to the spatial organization of genomes, and we propose that the various conformations that chromatin assumes are not so much the result of a linear hierarchy, but rather of both converging and conflicting dynamic forces that act on it.

 

Summary and Conclusions

So this is the part where I should argue about how all the things discussed in this OP do point to design. Or maybe I should simply keep silent in this case. Because, really, there should be no need to say anything.

But I will. Because, you know, I can already hear our friends on the other side argue, debate, or just suggest, that there is nothing in all these things that neo-darwinism can’t explain. They will, they will. Or they will just keep silent.

So, I will briefly speak.

First of all, a summary of what has been said. I will give it as a list of what really happens, as far as we know, each time that a gene starts to be transcribed in the appropriate situation: maybe to contribute to the differentiation of a cell, maybe to adjust to a metabolic challenge, or to anything else.

  • So, our gene was not transcribed, say, “half an hour ago”, and now it begins to be transcribed. What has happened ot effect this change?
  • As we know, first of all some specific parts of DNA that were not active “half an hour ago” had to become active. At the very least, the gene itself, its promoter, and one appropriate enhancer.  Therefore, some specific condition of the DNA in those sites must have changed: maybe through changes in histone marks, maybe through chromatin remodeling proteins, maybe through some change in DNA methylation, maybe through the activity of some TF, or some multi-protein structure made by TFs or other proteins, maybe in other ways. What we know is that, whatever the change, in the end it has to change some aspects of the pre-existing chromatin state in that cell: chromatin accessibility, nucleosome distribution, 3D configuration, probably all of them. Maybe the change is small, but it must be there. In our Fig. 2 (at the beginning of this long post) the red arrows are therefore acting from left to right, to effect a transition from state 1 to state 2.
  • So, the appropriate DNA sequences are now accessible. What happens then?
  • At the promoter, we need at least that the multiprotein structure formed by our 6 general TFs and the multiprotein structure that is RNA Pol II bind the promoter. See Figure 3.
  • Always at the promoter, the huge multiprotein structure which is the Mediator complex must join all the rest. See Figure 4.
  • At the enhancer, one or more specific TFs must bind the appropriate motif by the appropriate DBD, interact one with the other, recruit possible co-factors.
  • At this point, the structure bound at the enhancer must interact with the distant structure at the promoter, probably through the Mediator complex, generating a new chromatin loop, usually in the context of the same TAD. see Fig. 7.
  • So, now the 3D configuration of chromatin has changed, and transcription can start.
  • But as the new protein is transcribed, and then probably translated (through many further intermediate regulation steps, of course, like the Spliceosome and all the rest), the transcriptome/proteome is changing too. In many cases, that will imply changes in factors that can act on chromatin itself, for example if the new protein is a TF, or any other protein implied directly or indirectly in the above described processes, or even if it can in some way generate new signals that will in the end act on transcription regulation. Maybe the change is small, but it must be there. In our Fig. 2 (at the beginning of this long post) the red arrows are now probably acting from right to left, possibly initiating a transition from state 2 to state 3.
  • After all, that is what must have happened at the beginning of this sequence, when some new condition in the transcriptome/proteome started the transcription of our new protein.

And now, a few considerations:

  • This is just an essential outline: what really happens is much, much more complex
  • As we have seen, the working of all this huge machinery requires a lot of complex and often very specific proteins. First of all the 2000 specific TFs, and then the dozens, maybe hundreds, of proteins that implement the different steps. Many of which are individually huge, often thousands of AAs long.
  • The result of this machinery and of its workings is that thousands of proteins are transcribed and translated smoothly at different times and in different cells. The result is that a stem cell is a stem cell, a hepatocyte a hepatocyte and a lymphocyte a lymphocyte. IOWs, the miracle of differentiation. The result is also that liver cells, renal cells, blood cells, after having differentiated to their “stable” state, still perform new wonders all the time, changing their functional states and adapting to all sorts of necessities. The result is also that tissues and organs are held together, that 10^11 neurons are neatly arranged to perform amazing functions, and so on. All these things rely heavily on a correct, constant control of transcription in each individual cell.
  • This scenario is, of course, irreducibly complex. Sure, many individual components could probably be shown not to be absolutely necessary for some rough definition of function: transcription can probably initiate even in the absence of some regulatory factor, and so on. But the point is that the incredibly fine regulation of the whole process, its management and control, certainly require all or almost all the components that we have described here.
  • Beyond its extraordinary functional complexity, this regulation network also uses at its very core at least one big sub-network based on a symbolic code: the histone code. Therefore, it exhibits a strong and complex semiotic foundation.

So, the last question could be: can all this be the result of a neo-darwinian process of RV + NS of simple, gradual steps?

That, definitely, I will not answer. I think that everybody already knows what I believe. As for others, everyone can decide for themselves.

 

 

 

 

PS: Here is a scatterplot of some values of functional information obtained by my method as compared to the values given by Durston, as per request of George Castillo. As can be seen, the correlation is quite good, even with all the difficulties in comparing the two methods, that are quite different under many aspects. However, my method definitely underestimates functional information as compared to Durston’s (or vice versa).

 

PPS:  More graphs added as per request of George Castillo. The explanation in in comment #270.

 

 

 

 

Comments
George Castillo, you're completely off target, buddy. the issue is not about how much we know or don't know, it's that such evolutionary mechanism in the case we are discussing is purely imaginary, it doesn't exist at all. we're not talking about complexity, we're talking about functional complexity that definitely has been designed you won't find a non-design way to get that, no matter how much time you give it. time to wake up and smell the flowers in the garden just see the trend... every new research discovery points to design the inexorable march of the design revolution is going to take many people by surprise, but then we will tell them "I told you so" the poisonous pseudo-scientific hogwash should be removed from science-related publications As Tom Hanks said in the movie "Sully": "can we get serious now?"jawa
September 1, 2018
September
09
Sep
1
01
2018
09:23 PM
9
09
23
PM
PDT
I will agree that answering your question is strategic suicide, upright, because 1. you have carefully designed the question in a way that will force most people (read: people with little knowledge of biology) to eventually pidgeonhole themselves into saying that the first aaRs was "made from memory" after some number of other aaRs were somehow made not from memory (by chance? I guess is the alternative?) 2. the entire premise of your question is a strawman as you are unflinchingly rigid in the definition of an aaRs, its functions/roles, and the system itself, but the conversation is in fact about the evolution of the system which occured millenia ago. Your question is not representative of how anyone thinks this system evolved. 3. no one knows how the translation system evolved; how information was first encoded in a genome and how that genome was converted into a functional molecule. It is an incredibly difficult question to ask and to try to answer. But saying the evolution of this process is so complex, or that transcription is so complex and therefore they must have been designed, is not the answer. Invoking some designer when the road gets tough might make it easy for you to sleep at night, but if everyone did that, we'd still be banging stones together to cook our dinner.George Castillo
September 1, 2018
September
09
Sep
1
01
2018
07:43 PM
7
07
43
PM
PDT
To all: This is very recent and definitely very much in favor of the central role of intrinsically disordered regions (IDRs) and intrinsically disordered proteins (IDPs): The evolutionary origins of cell type diversification and the role of intrinsically disordered proteins. https://www.ncbi.nlm.nih.gov/pubmed/29394379
Abstract The evolution of complex multicellular life forms occurred multiple times and was attended by cell type specialization. We review seven lines of evidence indicating that intrinsically disordered/ductile proteins (IDPs) played a significant role in the evolution of multicellularity and cell type specification: (i) most eukaryotic transcription factors (TFs) and multifunctional enzymes contain disproportionately long IDP sequences (?30 residues in length), whereas highly conserved enzymes are normally IDP region poor; (ii) ~80% of the proteome involved in development are IDPs; (iii) the majority of proteins undergoing alternative splicing (AS) of pre-mRNA contain significant IDP regions; (iv) proteins encoded by DNA regions flanking crossing-over 'hot spots' are significantly enriched in IDP regions; (v) IDP regions are disproportionately subject to combinatorial post-translational modifications (PTMs) as well as AS; (vi) proteins involved in transcription and RNA processing are enriched in IDP regions; and (vii) a strong positive correlation exists between the number of different cell types and the IDP proteome fraction across a broad spectrum of uni- and multicellular algae, plants, and animals. We argue that the multifunctionalities conferred by IDPs and the disproportionate involvement of IDPs with AS and PTMs provided a IDP-AS-PTM 'motif' that significantly contributed to the evolution of multicellularity in all major eukaryotic lineages.
Emphasis mine, just to show the connection to this thread. Note the "disordered/ductile" double meaning proposed for the "D"! :)gpuccio
September 1, 2018
September
09
Sep
1
01
2018
02:00 PM
2
02
00
PM
PDT
To all: What happens at super-enhancer regions? Very complex things, it seems. Involving not only the expected biochemical reactions and protein protein interactions, but also intrinsically disordered regions (IDRs), interesting phase separations, and so on. See here: Coactivator condensation at super-enhancers links phase separation and gene control. https://www.ncbi.nlm.nih.gov/pubmed/29930091
Abstract: Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes.
IDRs are a favourite of our small group of commenters, epsecially DATCG and me! :)gpuccio
September 1, 2018
September
09
Sep
1
01
2018
01:47 PM
1
01
47
PM
PDT
EugeneS: The photon retina nonsense that you quote seems to be a creative variant of the old and infamous "deck of cards argument" which goes more or less: "When you draw the 52 cards in some specific random order, that result is extremely unlikely (probability = 8.065818e-67). But it has happened! Therefore, extremely unlikely events happen all the time." That is of course full evidence, for the fans of the argument, that ID is doomed. I think that someone raised again a similar argument recently, in a discussion here, but I cannot remember who. Suffice it to say that this kind of reasoning is one of the best examples of the depths of inanity that can be reached by the human mind.gpuccio
September 1, 2018
September
09
Sep
1
01
2018
11:56 AM
11
11
56
AM
PDT
Charles Peirce, of course...EugeneS
September 1, 2018
September
09
Sep
1
01
2018
11:53 AM
11
11
53
AM
PDT
UB #55 Absolutely! Shallit and other romantic defenders of all good from all bad cannot do anything of substance with the fact that, apart from living organisms, in all known universe signalling systems are observed only in correlates of intelligence. I have seen different tactics of dissenters that they employ against ID ranging from panpsychism to a complete dismissal of abductive reasoning as 'a simulacra, an ideosyncrasy of Chalse Peirce'. One of them, remarkably, said, in an attempt to debunk ID, that all manners of things must have happened and did happen, but we now see only what survived. He asked me, why does a photon from a distant star get right into my retina? Mind you, the only problem is to demonstrate the ease with which life originates... What a disgrace! And, of all people, these then claim that they are standing for science against obscurantism.EugeneS
September 1, 2018
September
09
Sep
1
01
2018
06:04 AM
6
06
04
AM
PDT
Junk DNA. Right. All that transcription, ain't no big deal.Upright BiPed
September 1, 2018
September
09
Sep
1
01
2018
05:15 AM
5
05
15
AM
PDT
To all: About super-enhancers. This has just come out on Pubmed (August 31, 2018). Super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers https://www.tandfonline.com/doi/abs/10.1080/15592294.2018.1514231
Abstract: Super-enhancers and stretch enhancers represent classes of transcriptional enhancers that have been shown to control the expression of cell identity genes and carry disease- and trait-associated variants. Specifically, super-enhancers are clusters of enhancers defined based on the binding occupancy of master transcription factors, chromatin regulators, or chromatin marks, while stretch enhancers are large chromatin-defined regulatory regions of at least 3,000 base pairs. Several studies have characterized these regulatory regions in numerous cell types and tissues to decipher their functional importance. However, the differences and similarities between these regulatory regions have not been fully assessed. We integrated genomic, epigenomic, and transcriptomic data from ten human cell types to perform a comparative analysis of super and stretch enhancers with respect to their chromatin profiles, cell type-specificity, and ability to control gene expression. We found that stretch enhancers are more abundant, more distal to transcription start sites, cover twice as much the genome, and are significantly less conserved than super-enhancers. In contrast, super-enhancers are significantly more enriched for active chromatin marks and cohesin complex, and more transcriptionally active than stretch enhancers. Importantly, a vast majority of super-enhancers (85%) overlap with only a small subset of stretch enhancers (13%), which are enriched for cell type-specific biological functions, and control cell identity genes. These results suggest that super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers, and importantly, most of the stretch enhancers that are distinct from super-enhancers do not show an association with cell identity genes, are less active, and more likely to be poised enhancers.
A pre-version of the full paper is available at biorxiv, here: https://www.biorxiv.org/content/biorxiv/early/2018/04/30/310839.full.pdf Let's try to understand. It seems that in the last few years two special classes of enhancers have been independently defined and studied by different groups of researchers: 1) Super-enhancers are "defined based on their enrichment for binding of key master regulator TFs, Mediator, and chromatin regulators. These cluster of enhancers are cell type-specific, control the expression of cell-identity genes, are sensitive to perturbation, associated with disease, and boost the processing of primary microRNA into precursors of microRNAs". 2) Stretch-enhancers, instead, are large genomic regions with enhancer characteristic and defined based on their size (>3kb). So, the concept of super-enhancer depends essentially on enrichment of the binding of Master reguklators, while the concept of strecth-enhancer is based only on the length of the enhancer region. The point is that many think that the two concepts are overlapping. Both these special classes of enhancers seem to be cell type-specific and related to the control of cell identity genes. The quoted paper, instead, finds important difference bewteen the two classes. They considered existing databses of known sequences already independently defined as super-enhancers or stratch-enhancers, and analyzed those sequences in 10 human cell lines. The results are very interesting, and you can see them detailed in Fig. 1 of the paper. In brief they found, in those 10 cell lines: a) An average of 745 superenhancers with mean size 22,812 bp b) An average of 11,160 stretch enhancers with mean size 5,060 bp c) So, super-enhancers seem to be significanlty longer than stretch-enhancers, but they are much less numerous. See Fig. 1, which details the number of the two types of regions in each cell line. c) Fig. 1 b shows that, in each cell line, the two categories cover a different fraction of the genome, always greater for stretch-enhancers, with maximum values of about 5% for stretch-enhancers and about 1% for super-enhancers. d) Super-enhancers are usually nearer to the promoter and the TSS (Fig. 1 c). e) Super-enhancers are much more evolutionary conserved (Fig. 1 d). f) Super-enhancers are highly enriched for active chromatin marks, while strecth-enhancers are highly enriched for poised chromatin mark (Fig. 2, a and b). g) Super-enhancers are significantly more active and located in open regions than stretch enhancers, which are more likely to be poised. h) Super-enhancers are enriched with cohesin and CTCF binding, a sign of active loop formation (Fig. 3, a and b). i) Super-enhancers are transcriptionally more active than stretch enhancers, as shown by RNA Pol II bindign and other markers (Fig. 4, a,b). j) Super-enhancers are transcriptionally more active than stretch enhancers, IOWs generate more eRNA (Fig. 4, c,d). k) Stretch enhancers are less cell-type-specific than super-enhancers. l) While the two classes are definitely distinct, there is some overlap which has definite features: a vast majority of super-enhancers (85%) overlap with only a small number of stretch enhancers (13%), and the overlapping regions (super-stretch enhancers) are definitely smaller in size (Fig. 5, a,b,c). m) These special overlapping regions (super-stretch enhancers) are cell-type-specific and control key cell identity genes. n) In general, enhancers are more likely to be cell-type-specific, transcriptionally active, and frequently interacting when found in clusters at the genomic scale, whatever their sizes. I think these things are very interesting. A whole new level of detail is rapidly unfolding.gpuccio
September 1, 2018
September
09
Sep
1
01
2018
01:19 AM
1
01
19
AM
PDT
UB: You really make a great point at #55! :) You have caught a profound concept, which is probably related to the central idea of consciousness and its properties. Indeed, an engineered algorithm is something that we understand, not just a series of connections between steps. That's the difference netween artificial intelligence and intelligence, where "artificial" in the end stays for "not really true". We write progarms using programming languages, and not directly machine code, for the same reason: we need to understand what is happening. Semiosis, the ability to project abstract thinking and intuitions into material events, is what makes us humans. And gives us power that no other material process in the universe seems to have, including the power to generate complex functional information. That's why ID is such an important worldview: it's not only the best explanation for biological realities, and probably for the universe itself; it's a key to understanding the deeper levels of reality that are hidden behind everything we experience. If neo-darwinists are happy with describing things without understanding them, we certainly beg to differ. And, in the end, even those who do not recognize understanding as a precious and unique experience are forced to use understanding words and constructs to just communicate what they believe.gpuccio
September 1, 2018
September
09
Sep
1
01
2018
12:08 AM
12
12
08
AM
PDT
UB, Very interesting observation. Thanks.PaoloV
August 31, 2018
August
08
Aug
31
31
2018
11:36 PM
11
11
36
PM
PDT
Reading some of the papers listed, leading to papers not listed, I am struck by the use of the word "mark". With discrete objects described as "marks", we can understand the functioning of these systems. Without them, we would only measure and describe the dynamics of the system (using language and descriptions we already have) but we would understand nothing else. How appropriate that an abstract concept is at the very center of our descriptions and understandings; an organizational utility used to specify something among alternatives, a control. It's interesting that the parts of system that must be recorded in our descriptions (in order for those descriptions to be useful to us) are the teleological and the irreducible. Materialists just can't catch a break.Upright BiPed
August 31, 2018
August
08
Aug
31
31
2018
10:06 PM
10
10
06
PM
PDT
UB: I think you are absolutely right. Indeed, George Castillo has stated more than once that I don't want to accept his "evidence" for a bacterial origin of eukaryotic histones because it goes against my personal opinions. That's really strange, because I have always accepted without any difficulty the evidence he quoted for an archaeal origin of the eukaryotic histone fold. So, why should a bacterial origin be against my personal opinions, while I am glad to accept an archaeal origin? Am I so partial to archaea? What have bacteria done to me personally? (OK, some fever here and there, I suppose :) ) The simple truth is that I am convinced by the evidence he quoted for archaea, while I consider, at best, very inconclusive the evidence he quoted for bacteria. One thing that I find really depressing is having to discuss with someone who is not interested at all in truth, or even in other's ideas, and considers everything only as a personal fight for some not well defined agenda. Better to just avoid that kind of people.gpuccio
August 31, 2018
August
08
Aug
31
31
2018
08:37 AM
8
08
37
AM
PDT
George's performance on the chromatin thread is a non-starter. He pretends to himself that he has somehow penetrated the thrust of the GP's argument, when in fact he hasn't even made a dent. Anyone who has followed GP's argument knows very well that descent is not an issue with GP. It never has been. He's made the argument for descent himself many times. The issue is the mechanism involved, and to that George has zilch. And the reason he won't answer my question is because a) logic, empirical evidence, and history are not in his favor, and b) the comfortable vagueries of materialism must be protected at all costs. Answering that question in earnest is strategic suicide. So he replaces the answer with insults and puffery; the intellectual equivalent of whistling past the graveyard.Upright BiPed
August 31, 2018
August
08
Aug
31
31
2018
06:45 AM
6
06
45
AM
PDT
Paolo, Keep those silly jokes off this serious discussion. If George Castillo knows so much, why did he avoid answering gpuccio’s and UB’s questions? Wake up and smell the coffee! You may want to study a basic biology 101 before commenting here.jawa
August 31, 2018
August
08
Aug
31
31
2018
04:51 AM
4
04
51
AM
PDT
Peter, Don’t laugh. There’s no such a mystery anymore. Ask George Castillo in the chromatin thread to reveal it. Apparently he knows how the eukaryote histones evolved from their bacteria ancestor proteins. Quite simple. He made gpuccio run for the hills. :)PaoloV
August 31, 2018
August
08
Aug
31
31
2018
04:43 AM
4
04
43
AM
PDT
PeterA: Thanks to you. I think that really came from my heart!gpuccio
August 31, 2018
August
08
Aug
31
31
2018
04:02 AM
4
04
02
AM
PDT
DATCG: Welcome, I was missing you! :) I am sure you will contribute brilliantly as always. There is no rush, take your time. :)gpuccio
August 31, 2018
August
08
Aug
31
31
2018
04:01 AM
4
04
01
AM
PDT
#45: “The biggest mystery of all, probably, is that so many people are still convinced that the neo-darwinist theory can be a good explanation for those major events, while it can not even explain the appearance of a single new complex functional protein.” This made me laugh unstoppably. How funny, though a sad reality at the same time. Well written. Thanks.PeterA
August 31, 2018
August
08
Aug
31
31
2018
03:23 AM
3
03
23
AM
PDT
Gpuccio, Lovely work :) I'm to busy to post much, but lurking. And the Chromatin take down was excellent ;-) If I have time, may ask questions or add over the weekend once I have time to digest your full post! ex-junk! Hmmm ... yep... that's a keeper! :) former junk, formerly thought to be junk, surprise, this is not junk, DNA Junk found to have function Junk! ;-) Hahaha.... oh my! When will blind, unguided Darwinist run out of room Junk for their theory to work Junk? Have fun guys! This will be fun reading.DATCG
August 31, 2018
August
08
Aug
31
31
2018
03:05 AM
3
03
05
AM
PDT
To all: A few further thoughts about enhancers: 1) The most recent estimates of their number are now in the range of more than one million, or even millions. The simple truth is: nobody really knows how many of them can be found, for example, in the human genome. 2) According to the most recent estimates, they can well represent about 12% of the whole human genome: see Table 1 from the following paper: GeneHancer: genome-wide integration of enhancers and target genes in GeneCards https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5467550/ Line 4 of the table, "All sources combined" gives the following numbers: Number of elements. 434 139 Mean length: 1233 bp % of the whole genome: 12.4% So much for junk DNA! So, enhancer DNA would be more than 8 times more than protein coding DNA, at least. But if enhancers were really one million, or even more, as many believe, that figure could go up to 25% of the whole genome or more. 3) Enhancers apparently form some higher association structures, regions where many enhancers are present and that could represent specially important nodes of transcritpion regulation. Some refer to these as "super enhancers". 4) Great progress is neing made in techniques that can image enhancer-promoter activity and therefore £D chromatin topology dynamically, in space and time: we can expect amny new important discoveries from that kind of research. Here are a couple of very recent examples: Enhancer functions in three dimensions: beyond the flat world perspective https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981187/
Abstract: Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.
and: Dynamic interplay between enhancer–promoter topology and gene activity https://www.nature.com/articles/s41588-018-0175-z
Abstract: A long-standing question in gene regulation is how remote enhancers communicate with their target promoters, and specifically how chromatin topology dynamically relates to gene activation. Here, we combine genome editing and multi-color live imaging to simultaneously visualize physical enhancer–promoter interaction and transcription at the single-cell level in Drosophila embryos. By examining transcriptional activation of a reporter by the endogenous even-skipped enhancers, which are located 150?kb away, we identify three distinct topological conformation states and measure their transition kinetics. We show that sustained proximity of the enhancer to its target is required for activation. Transcription in turn affects the three-dimensional topology as it enhances the temporal stability of the proximal conformation and is associated with further spatial compaction. Furthermore, the facilitated long-range activation results in transcriptional competition at the locus, causing corresponding developmental defects. Our approach offers quantitative insight into the spatial and temporal determinants of long-range gene regulation and their implications for cellular fates.
gpuccio
August 31, 2018
August
08
Aug
31
31
2018
02:58 AM
2
02
58
AM
PDT
jawa: Of course histones are proteins, so they are the product of the transcription and translation machineries. Like all other proteins, including those necessary for transcription, starting from the absolutely essential DNA-directed RNA polymerase and many others, and those necessary for translation, including the 20 aaRNA synthetases, the about 80 ribosomal proteins (in eukaryotes) ans many others. So, if you ask: If proteins require transcription but they are part of the transcription mechanism, how does the first protein get produced? you are definitely missing something, the same thing that we are all missing: how all the complex machinery that allows life to exist was generated. Of course the only possible answer is that those things were designed, and that they were designed according to a general plan. However, even from a design point of view, it remains IMO a beautifulk mystery. Regarding transcription, in particular, we must consider that my OP is essentially about transcription regulation in eukaryotes. In prokaryotes, transcription regulation is rather different, and it is certainly simpler than in eukaryotes, but not simple at all! I have given only a few hints about the differences between prokaryotes and eukaryotes in the OP, because my purpose was to discuss eukaryotic transcription. The simple fact is that eukaryotic transcription has a lot of new and unprecedetned layers of implementation and regulation, even if it certainly reuses many features that are alredy there in prokaryotes. The role of histones, of the Mediator complex, of chromatin and nuclear organization, are just a few important examplse of eukaryotic novelties. I would say that in the amazing history of life on our planet each single complex event, even the generation of a single new protein, is a wonderful example of design and engineering. But there are certainly a few major steps where the level of design innovation is almost undescribable. They are (at least): a) Origin of life b) The appearance of eukaryotes c) The appearance of metazoa d) The explosions of different organisms, body plans and phyla in metazoa, in particular the Ediacaran and Cambrian explosions And, of course, there are many others (the explosion of flower plants, the transition to vertebrates, and so on). The biggest mystery of all, probably, is that so many people are still convinced that the neo-darwinist theory can be a good explanation for those major events, while it can not even explain the appearance of a single new complex functional protein.gpuccio
August 31, 2018
August
08
Aug
31
31
2018
02:03 AM
2
02
03
AM
PDT
gpuccio, Are the histones also product of the DNA - transcription - mRNA - translation process? Are they part of the transcription mechanism? If they require transcription but they are part of the transcription mechanism, how do the first histone get produced? Maybe i'm missing something. Thanks.jawa
August 30, 2018
August
08
Aug
30
30
2018
06:28 PM
6
06
28
PM
PDT
I like jawa’s analogy to Copernicus. The old stablishment is deeply entrenched in their archaic ideas that will fall like a house of cards.PaoloV
August 30, 2018
August
08
Aug
30
30
2018
04:01 PM
4
04
01
PM
PDT
jawa, PeterA: Good toughts! :) One of the problems, IMO, is that the current ideology in science and biology is to ignore intentional function, design, and in general teleology. At all costs. It must be difficult, even for professional biologists, to really appreciate the multi-layered beauty of biological engineering and at the same be forced to deny the functional depth and the wonderful richness of thought that pervade that engineering in all its parts. You know, only for a limited number of times can one pretend to be amazed at the unending cleverness of unguided evolution, and really keep one's intellectual, cognitive and moral integrity. Defending what is false, at all costs, has a definite price, even for the best and most intelligent people.gpuccio
August 30, 2018
August
08
Aug
30
30
2018
03:43 PM
3
03
43
PM
PDT
jawa, Agree with your commentary. However, regarding the statement “when it finally gets noticed by the mainstream media.” I would rather say that many biologists could be taken by surprise too. It will be interesting to see their reaction.PeterA
August 30, 2018
August
08
Aug
30
30
2018
12:04 PM
12
12
04
PM
PDT
I’m still processing the abundant information gpuccio shared here. I may have a few questions about the OP, but will have to wait till I find more time to pose them clearly.PeterA
August 30, 2018
August
08
Aug
30
30
2018
12:00 PM
12
12
00
PM
PDT
It’s interesting to see how this excellent OP and the additional information posted in gpuccio’s comments attract so few commenters. The issues described here are a fundamental part of the current revolution in biology, which is going to take many people by surprise, when it finally gets noticed by the mainstream media. Note that it took quite a long time for Nicolaus Copernicus’ brilliant discoveries to be published and much longer to get accepted. The same is happening now in biology, which has become the actual queen of science, using heavy math, physics, chemistry, bioinformatics, modeling, electronics to understand the complex functionality seen in research. The medical field depends on the advance in biology research. The whole society benefits from it too. Amazing discoveries in the near future will surprise many folks out there. Just wait and see. In the meantime, our appreciation to gpuccio for his strong dedication to studying these fascinating topics of biology and for sharing with the rest of us what he has learned.jawa
August 30, 2018
August
08
Aug
30
30
2018
10:57 AM
10
10
57
AM
PDT
#37 is a fascinating topic. Another article by itself.jawa
August 30, 2018
August
08
Aug
30
30
2018
10:06 AM
10
10
06
AM
PDT
To all: Let's say something about TADs (topologically associating domains). The idea is that promoter-enhancer contacts and loops happen inside greater compartments (TAds), delimited by specific insulators. So, enhancers in a TAD will often interact eith promoters in the same TAD, while enhancer-promoter interaction between different TADs are possible, but rare. TADs seem to be relatively stable, but their boundaries, as much as their states (acitvated or inactivated) can change in different cell types. Here is a recent paper about TADs: TADs are 3D structural units of higher-order chromosome organization in Drosophila.
Abstract: https://www.ncbi.nlm.nih.gov/pubmed/29503869 Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes.
Another one: Principles of Chromosome Architecture Revealed by Hi-C. https://www.ncbi.nlm.nih.gov/pubmed/29685368
Abstract Chromosomes are folded and compacted in interphase nuclei, but the molecular basis of this folding is poorly understood. Chromosome conformation capture methods, such as Hi-C, combine chemical crosslinking of chromatin with fragmentation, DNA ligation, and high-throughput DNA sequencing to detect neighboring loci genome-wide. Hi-C has revealed the segregation of chromatin into active and inactive compartments and the folding of DNA into self-associating domains and loops. Depletion of CTCF, cohesin, or cohesin-associated proteins was recently shown to affect the majority of domains and loops in a manner that is consistent with a model of DNA folding through extrusion of chromatin loops. Compartmentation was not dependent on CTCF or cohesin. Hi-C contact maps represent the superimposition of CTCF/cohesin-dependent and -independent folding states.
And another one: Gene functioning and storage within a folded genome. https://www.ncbi.nlm.nih.gov/pubmed/28861108
Abstract In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 ?m. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome. This article was specially invited by the editors and represents work by leading researchers.
Fig. 1 is simple and nice, showing the hyerarchy between: - Chromosomal territories - A and B compartments - TADs - Chromatin loops Other statements from that paper:
Additional line of evidence supporting the idea that TADs represent structural and functional units of the genome arises from the studies of cell differentiation and reprogramming. In the model system of ESC differentiation into several distinct lineages, TADs were found to be largely stable along the genome, but demonstrated a high flexibility in both inter- and intra-TAD interactions [75]. TADs containing upregulated genes exhibit a substantial increase in chromatin interactions and relocate into A-compartment, whereas TADs harboring downregulated genes tend to decrease a number of chromatin contacts and undergo A-to-B compartment switching. ... While, in Drosophila, the primary function of TADs appears to be the storage of inactive genes [44], mammalian TADs acquire additional function in transcriptional control [118]. Although stochastic interactions of neighboring nucleosomes are likely to contribute also in the assembly of mammalian TADs, the insulator protein CTCF plays an essential role in the spatial and functional separation of these TADs. It has been suggested that chromatin loop extrusion plays an essential role in the formation of mammalian TADs [115, 116]. However, the nature of extrusion machines remains elusive and the model still lacks direct experimental proves. Mammalian TADs have a complex structure and are likely to be assembled from smaller looped and ordinary domains [46]. The relation of these nested domains to the functional organization of the genome remains to be studied.
Interesting perspectives indeed! :)gpuccio
August 30, 2018
August
08
Aug
30
30
2018
04:54 AM
4
04
54
AM
PDT
1 8 9 10 11 12

Leave a Reply