From Philip Ball at Nautilus:
This move beyond the visible has become a fundamental part of science’s narrative. But it’s a more complicated shift than we often appreciate. Making sense of what is unseen—of what lies “beyond the light”—has a much longer history in human experience. Before science had the means to explore that realm, we had to make do with stories that became enshrined in myth and folklore. Those stories aren’t banished as science advances; they are simply reinvented. Scientists working at the forefront of the invisible will always be confronted with gaps in knowledge, understanding, and experimental capability. In the face of those limits, they draw unconsciously on the imagery of the old stories. This is a necessary part of science, and these stories can sometimes suggest genuinely productive scientific ideas. But the danger is that we will start to believe them at face value, mistaking them for theories.
He tells us stuff we surely didn’t know, such as that several of the early pioneers of television were “motivated by paranormal sympathies.”
And Tegmark and his multiverse? Ball says,
The idea is derived from the work of physicist Hugh Everett in the 1950s—but Everett himself never spoke of “many worlds.”
At that time, the prevailing view in quantum theory was that, when you make a measurement on a quantum system, this selects just one of the possible outcomes enumerated in the mathematical entity called the wavefunction—a process called “collapsing the wavefunction.” The problem was there was nothing in the theory to cause this collapse—you had to put it in “by hand.” Everett made the apparently innocuous suggestion that perhaps there is no collapse: that all the other possible outcomes also have a real physical existence. He never addressed the question of where those other states reside. But some of his successors build up around them an entire universe, identical to our own in every respect except for that one aspect. Every quantum event causes these parallel universes to proliferate, so that “the act of making a decision causes a person to split into multiple copies,” according to Tegmark. (More properly, these alternative universes have always existed, it’s just that things evolve differently in each of them.)
But this idea itself collapses into incoherence when you actually try to populate the Many-Worlds with sentient beings. It’s not (as Tegmark might be thought to imply above) that there are alternative versions of us in these many worlds—they are all in some sense us, but there’s no prescription for where to put our apparently unique consciousness. This conundrum arises not (as some adherents insist) as an inevitable result of “taking the math seriously,” but simply because of the impulse, motivated by neither experiment nor theory, to make each formal mathematical expression a complete world of its own, invisible from this one. That is done not for any scientific reason but because it is what, in the face of the unknown, we have always done. In the Middle Ages, the tangible evidence for invisible forces like magnetism made invisible beings like demons seem more plausible. The discovery of X-rays, radio waves and radioactivity likewise bolstered beliefs in a populous “unseen universe.” The apparent collapse of the wavefunction is indeed a profound mystery—should we then be surprised that one response is to build invisible universes to compensate?
More.
That’s an interesting way of understanding it. Some of us sense another motive: To move science beyond the risks of evidence, so that “pro science” means supporter of expert consensus, not of evidence.
Follow UD News at Twitter!