- Share
-
-
arroba

From ScienceDaily:
Firstly, the team fitted the overall rotation of the galaxy, and then the turbulence in the gas clouds. To their surprise they found that galaxy S0901 was extremely well behaved. Instead of turbulence, it was found to be in orderly rotation, much more akin to the majestic galaxies of today.
“Usually, when astronomers examine galaxies at this early era, they find that turbulence plays a much greater role than it does in modern galaxies. But S0901 is a clear exception to that pattern, and the Clone could be another,” says Rhoads.
The Clone, the second galaxy in their study, could also be fitted by an orderly rotation. However, because it was somewhat dimmer, the quality of the data was not so good. This meant that the data could also be fitted with a highly turbulent model, as conventional wisdom would expect.
“Galaxies 10 billion years ago were making stars more actively than they do now,” says Malhotra, “They usually also show more turbulence, likely because they are accumulating gas faster than a modern galaxy does. But here we have cases of early galaxies that combine the ‘calm’ rotation of a modern one with the active star formation of their early peers. This suggests first that these galaxies have finished accumulating their gas, at least for now. But it also seems that turbulence is not actually required to trigger that early, active star formation.”
Good news: No one has so far suggested that the simple explanation is that they are left over from the universe that predated this one.
It could be as simple as something like “Was that big gravity wave find just dust? Not a multiverse?” Save time backtracking. Just don’t say it in the first place. 😉
Follow UD News at Twitter!