Uncommon Descent Serving The Intelligent Design Community

Tonight In Seattle, “Is Intelligent Design Science?”

Share
Facebook
Twitter
LinkedIn
Flipboard
Print
Email

Come along this evening (7-9pm) to the Lake Hills Library in Seattle for a discussion hosted by the Seattle Analytic Philosophy Club on “Is Intelligent Design Science?” Casey Luskin, myself (Jonathan M.) and Josh Youngkin from Discovery Institute will be there. Go here for details!

Comments
OT: The level of complexity being revealed in molecular biology is at such a extreme level, that it truly does reflect what we expect to see if we were truly the handiwork of a infinitely powerful creator, i.e. God. And it, the complexity being revealed, certainly does not look like it was the product of the trial and error process of Darwinian evolution. Here is an excellent article that shows that the complexity being dealt with in molecular biology is so extreme that even when factoring in future advances in computer technology, man will never be able to completely understand the complexity in molecular biology: "Complexity Brake" Defies Evolution - August 2012 Excerpt: In a recent Perspective piece called "Modular Biological Complexity" in Science, Christof Koch (Allen Institute for Brain Science, Seattle; Division of Biology, Caltech) explained why we won't be simulating brains on computers any time soon: "Although such predictions excite the imagination, they are not based on a sound assessment of the complexity of living systems. Such systems are characterized by large numbers of highly heterogeneous components, be they genes, proteins, or cells. These components interact causally in myriad ways across a very large spectrum of space-time, from nanometers to meters and from microseconds to years. A complete understanding of these systems demands that a large fraction of these interactions be experimentally or computationally probed. This is very difficult." Physicists can use statistics to describe a homogeneous system like an ideal gas, because one can assume all the member particles interact the same. Not so with life. When describing heterogeneous systems each with a myriad of possible interactions, the number of discrete interactions grows faster than exponentially. Koch showed how Bell's number (the number of ways a system can be partitioned) requires a comparable number of measurements to exhaustively describe a system. Even if human computational ability were to rise exponentially into the future (somewhat like Moore's law for computers), there is no hope for describing the human "interactome" -- the set of all interactions in life. "This is bad news. Consider a neuronal synapse -- the presynaptic terminal has an estimated 1000 distinct proteins. Fully analyzing their possible interactions would take about 2000 years. Or consider the task of fully characterizing the visual cortex of the mouse -- about 2 million neurons. Under the extreme assumption that the neurons in these systems can all interact with each other, analyzing the various combinations will take about 10 million years..., even though it is assumed that the underlying technology speeds up by an order of magnitude each year. " Even with shortcuts like averaging, "any possible technological advance is overwhelmed by the relentless growth of interactions among all components of the system," Koch said. "It is not feasible to understand evolved organisms by exhaustively cataloging all interactions in a comprehensive, bottom-up manner." He described the concept of the Complexity Brake: "Allen and Greaves recently introduced the metaphor of a "complexity brake" for the observation that fields as diverse as neuroscience and cancer biology have proven resistant to facile predictions about imminent practical applications. Improved technologies for observing and probing biological systems has only led to discoveries of further levels of complexity that need to be dealt with. This process has not yet run its course. We are far away from understanding cell biology, genomes, or brains, and turning this understanding into practical knowledge." Why can't we use the same principles that describe technological systems? Koch explained that in an airplane or computer, the parts are "purposefully built in such a manner to limit the interactions among the parts to a small number." The limited interactome of human-designed systems avoids the complexity brake. "None of this is true for nervous systems.",,, to read more go here: http://www.evolutionnews.org/2012/08/complexity_brak062961.html One of the first hints I received that this level of extreme complexity was present in molecular biology was when I first learned that there are multiple overlapping codes in the DNA. This finding is astonishing because when man writes a computer program he writes a 'simple' single linear sequence of code that is read in only one direction, whereas DNA has multiple overlapping codes that are embedded on top of other codes, and within codes, that have multiple reading frames for the same sequence of code. Code that can be read forward and/or backward. Here are some of my collected notes to that effect: 'It's becoming extremely problematic to explain how the genome could arise and how these multiple levels of overlapping information could arise, since our best computer programmers can't even conceive of overlapping codes. The genome dwarfs all of the computer information technology that man has developed. So I think that it is very problematic to imagine how you can achieve that through random changes in a code.,,, More and more it looks like top down design and not just bottom up chance discovery of making complex systems.' - Dr. John Sanford http://www.youtube.com/watch?v=YemLbrCdM_s Overlapping & Embedded Genes - video http://www.youtube.com/watch?v=mGnOQv76jcU John Sanford, a leading expert in Genetics, comments on some of the stunning poly-functional complexity found in the genome: "There is abundant evidence that most DNA sequences are poly-functional, and therefore are poly-constrained. This fact has been extensively demonstrated by Trifonov (1989). For example, most human coding sequences encode for two different RNAs, read in opposite directions i.e. Both DNA strands are transcribed ( Yelin et al., 2003). Some sequences encode for different proteins depending on where translation is initiated and where the reading frame begins (i.e. read-through proteins). Some sequences encode for different proteins based upon alternate mRNA splicing. Some sequences serve simultaneously for protein-encoding and also serve as internal transcriptional promoters. Some sequences encode for both a protein coding, and a protein-binding region. Alu elements and origins-of-replication can be found within functional promoters and within exons. Basically all DNA sequences are constrained by isochore requirements (regional GC content), “word” content (species-specific profiles of di-, tri-, and tetra-nucleotide frequencies), and nucleosome binding sites (i.e. All DNA must condense). Selective condensation is clearly implicated in gene regulation, and selective nucleosome binding is controlled by specific DNA sequence patterns - which must permeate the entire genome. Lastly, probably all sequences do what they do, even as they also affect general spacing and DNA-folding/architecture - which is clearly sequence dependent. To explain the incredible amount of information which must somehow be packed into the genome (given that extreme complexity of life), we really have to assume that there are even higher levels of organization and information encrypted within the genome. For example, there is another whole level of organization at the epigenetic level (Gibbs 2003). There also appears to be extensive sequence dependent three-dimensional organization within chromosomes and the whole nucleus (Manuelides, 1990; Gardiner, 1995; Flam, 1994). Trifonov (1989), has shown that probably all DNA sequences in the genome encrypt multiple “codes” (up to 12 codes). Dr. John Sanford; Genetic Entropy 2005 DNA - Evolution Vs. Polyfuctionality - video http://www.metacafe.com/watch/4614519 "In the last ten years, at least 20 different natural information codes were discovered in life, each operating to arbitrary conventions (not determined by law or physicality). Examples include protein address codes [Ber08B], acetylation codes [Kni06], RNA codes [Fai07], metabolic codes [Bru07], cytoskeleton codes [Gim08], histone codes [Jen01], and alternative splicing codes [Bar10]. Donald E. Johnson – Programming of Life – pg.51 - 2010 The next evolutionary synthesis: Jonathan BL Bard Excerpt: We now know that there are at least 50 possible functions that DNA sequences can fulfill [8], that the networks for traits require many proteins and that they allow for considerable redundancy [9]. The reality is that the evolutionary synthesis says nothing about any of this; for all its claim of being grounded in DNA and mutation, it is actually a theory based on phenotypic traits. This is not to say that the evolutionary synthesis is wrong, but that it is inadequate – it is really only half a theory! http://www.biosignaling.com/content/pdf/1478-811X-9-30.pdf Scientists Map All Mammalian Gene Interactions – August 2010 Excerpt: Mammals, including humans, have roughly 20,000 different genes.,,, They found a network of more than 7 million interactions encompassing essentially every one of the genes in the mammalian genome. http://www.sciencedaily.com/releases/2010/08/100809142044.htm Time to Redefine the Concept of a Gene? – Sept. 10, 2012 Excerpt: As detailed in my second post on alternative splicing, there is one human gene that codes for 576 different proteins, and there is one fruit fly gene that codes for 38,016 different proteins! While the fact that a single gene can code for so many proteins is truly astounding, we didn’t really know how prevalent alternative splicing is. Are there only a few genes that participate in it, or do most genes engage in it? The ENCODE data presented in reference 2 indicates that at least 75% of all genes participate in alternative splicing. They also indicate that the number of different proteins each gene makes varies significantly, with most genes producing somewhere between 2 and 25. Based on these results, it seems clear that the RNA transcripts are the real carriers of genetic information. This is why some members of the ENCODE team are arguing that an RNA transcript, not a gene, should be considered the fundamental unit of inheritance. http://networkedblogs.com/BYdo8bornagain77
November 28, 2012
November
11
Nov
28
28
2012
02:39 PM
2
02
39
PM
PDT
OT: James Bond - 'Darwin was wrong' - video http://www.youtube.com/watch?v=1VW9u62_tAsbornagain77
November 28, 2012
November
11
Nov
28
28
2012
01:31 PM
1
01
31
PM
PDT
1 2

Leave a Reply