Culture Darwinism Genetics News science education

Mendel holds back genetics teaching?

Spread the love

From Gregory Radick at Nature:

The problem is that the Mendelian ‘genes for’ approach is increasingly seen as out of step with twenty-first-century biology. If we are to realize the potential of the genomic age, critics say, we must find new concepts and language better matched to variablebiological reality. This is important in education, where the reliance on simple examples may even promote an outmoded determinism about the power of genes.

What of Mendel? Some might complain that it is a poor anniversary gift to jettison him from his place of honour in the genetics curriculum. Let me suggest that this grumbling, although understandable, is misguided. If we want to honour Mendel, then let us read him seriously, which is to say historically, without back-projecting the doctrinaire Mendelism that came later. Study Mendel, but let him be part of his time.

Likewise, let our biology students be part of their time, by giving them a genetics curriculum fit for the twenty-first century. If we teach them about Mendel, we should do so not to fill them with slack-jawed wonder at his foundational achievement, but to help them to appreciate how even the most imaginative and rigorous science — and Mendel’s was first rate on both counts — bears the stamp of the historical circumstances of its making. To learn that lesson about past science is to bring a welcome level of self-awareness and critical self-reflection to the present. More.

This has got to be bad news for Darwinism today (not that one hears it directly admitted). Darwinian evolution depends so heavily on the mechanistic and determinist view of inheritance based in Mendelian genetics.

A post-Mendelian view might be better suited to the current drive toward rethinking evolution.

See also: There’s a gene for that… or is there?

and What the fossils told us in their own words

3 Replies to “Mendel holds back genetics teaching?

  1. 1
    bornagain77 says:

    Besides not teaching students the Mendelian ‘gene’, since it is ‘out of step with twenty-first-century biology’, it would also be very good not to teach students that biology is materialistic in its foundational basis, but is instead quantum mechanical in its foundational basis, since materialism is now also found to be ‘out of step with twenty-first-century biology’

    Molecular Biology – 19th Century Materialism meets 21st Century Quantum Mechanics – video

    Jim Al-Khalili, at the 2:30 minute mark of the following video states,
    “,,and Physicists and Chemists have had a long time to try and get use to it (Quantum Mechanics). Biologists, on the other hand have got off lightly in my view. They are very happy with their balls and sticks models of molecules. The balls are the atoms. The sticks are the bonds between the atoms. And when they can’t build them physically in the lab nowadays they have very powerful computers that will simulate a huge molecule.,, It doesn’t really require much in the way of quantum mechanics in the way to explain it.”
    At the 6:52 minute mark of the video, Jim Al-Khalili goes on to state:
    “To paraphrase, (Erwin Schrödinger in his book “What Is Life”), he says at the molecular level living organisms have a certain order. A structure to them that’s very different from the random thermodynamic jostling of atoms and molecules in inanimate matter of the same complexity. In fact, living matter seems to behave in its order and its structure just like inanimate cooled down to near absolute zero. Where quantum effects play a very important role. There is something special about the structure, about the order, inside a living cell. So Schrodinger speculated that maybe quantum mechanics plays a role in life”.
    Jim Al-Khalili – Quantum biology – video

  2. 2
    bornagain77 says:

    Physicists Discover Quantum Law of Protein Folding – February 22, 2011
    Quantum mechanics finally explains why protein folding depends on temperature in such a strange way.
    Excerpt: First, a little background on protein folding. Proteins are long chains of amino acids that become biologically active only when they fold into specific, highly complex shapes. The puzzle is how proteins do this so quickly when they have so many possible configurations to choose from.
    To put this in perspective, a relatively small protein of only 100 amino acids can take some 10^100 different configurations. If it tried these shapes at the rate of 100 billion a second, it would take longer than the age of the universe to find the correct one. Just how these molecules do the job in nanoseconds, nobody knows.,,,
    Today, Luo and Lo say these curves can be easily explained if the process of folding is a quantum affair. By conventional thinking, a chain of amino acids can only change from one shape to another by mechanically passing though various shapes in between.
    But Luo and Lo say that if this process were a quantum one, the shape could change by quantum transition, meaning that the protein could ‘jump’ from one shape to another without necessarily forming the shapes in between.,,,
    Their astonishing result is that this quantum transition model fits the folding curves of 15 different proteins and even explains the difference in folding and unfolding rates of the same proteins.
    That’s a significant breakthrough. Luo and Lo’s equations amount to the first universal laws of protein folding. That’s the equivalent in biology to something like the thermodynamic laws in physics.

  3. 3
    Visitor51 says:

    Before choosing which subjects and disciplines modern educational system needs, it is necessary to understand how students can use this knowledge and can they be useful for society. To my mind, there is no use to create new textbooks and give thousands of assignments when students just buy custom essay online because they do not feel they will need such skills in future. This generation always try to see the benefits and need perfect motivation.

Leave a Reply