Uncommon Descent Serving The Intelligent Design Community

Another possible dinosaur DNA find, also surrounded by controversy

Share
Facebook
Twitter
LinkedIn
Flipboard
Print
Email

Even though the story doesn’t include creationists:

Genetic material is not supposed to last over such time periods—not by a long shot. DNA begins to decay at death. Findings from a 2012 study on moa bones show an organism’s genetic material deteriorates at such a rate that it halves itself every 521 years. This speed would mean paleontologists can only hope to recover recognizable DNA sequences from creatures that lived and died within the past 6.8 million years—far short of even the last nonavian dinosaurs.

Riley Black, “Possible Dinosaur DNA Has Been Found” at Scientific American

Indeed. The splinters of many lecterns pounded on this point are still floating around the universe…

But then there is the Hypacrosaurus cartilage. In a study published earlier this year, Chinese Academy of Sciences paleontologist Alida Bailleul and her colleagues proposed that in that fossil, they had found not only evidence of original proteins and cartilage-creating cells but a chemical signature consistent with DNA.

Riley Black, “Possible Dinosaur DNA Has Been Found” at Scientific American

But wait…

Hot on the heels of Bailleul’s paper—and inspired by the controversy over what the biomolecules inside dinosaur bones represent—a separate team, led by Princeton University geoscientist Renxing Liang, recently reported on unexpected microbes found inside one from Centrosaurus, a horned dinosaur of similar age to Hypacrosaurus. The researchers said that they unearthed DNA inside the bone, but it was from lineages of bacteria and other microorganisms that had not been seen before.

Riley Black, “Possible Dinosaur DNA Has Been Found” at Scientific American

Maybe, but as Bailleul points out, how hard is it to tell bacterial genetic material from dino stuff?

Bailleul’s paper. (open access) From the paper:

Ground section of Hypacrosaurus (MOR 548) supraoccipital shows exceptional histological preservation of calcified cartilage. (A) An isolated supraoccipital (So) of Hypacrosaurus in dorsal view. (B–D) Ground section of another So showing calcified cartilage with hypertrophic chondrocyte lacunae. (C) Some cell doublets appear empty (green arrow), but others (pink arrow) present darker, condensed material consistent in shape and location with a nucleus (white arrows). (D) Dark, condensed, and elongated material with morphological characteristics of metaphase chromosomes. The limit of the cell lacuna is visible (black arrow). (E) Caudal view of a juvenile emu skull (∼8–10 months old) showing the So and exoccipitals (Exo) in articulation. (F, G) Ground section (stained with Toluidine blue) of calcified cartilage from this emu skull showing cell doublets (pink arrows) with remnants of nuclei (white arrows) and others without intracellular content (green arrow).
Ground section of Hypacrosaurus (MOR 548) supraoccipital shows exceptional histological preservation of calcified cartilage. (A) An isolated supraoccipital (So) of Hypacrosaurus in dorsal view. (B–D) Ground section of another So showing calcified cartilage with hypertrophic chondrocyte lacunae. (C) Some cell doublets appear empty (green arrow), but others (pink arrow) present darker, condensed material consistent in shape and location with a nucleus (white arrows). (D) Dark, condensed, and elongated material with morphological characteristics of metaphase chromosomes. The limit of the cell lacuna is visible (black arrow). (E) Caudal view of a juvenile emu skull (∼8–10 months old) showing the So and exoccipitals (Exo) in articulation. (F, G) Ground section (stained with Toluidine blue) of calcified cartilage from this emu skull showing cell doublets (pink arrows) with remnants of nuclei (white arrows) and others without intracellular content (green arrow).

This story sounds like a rework of an American story from a couple of years back. See More news from the decline: Revealing responses to creationist’s wrongful dismissal over soft dinosaur tissue discovery. Presumably, creationist Mark Armitage wasn’t supposed to be the one who found that stuff. If anyone was.

Also:

Food for thought from that paywalled soft dino tissue article in Science

Is Mark Armitage’s soft dinosaur tissue work a replication of Mary Schweitzer? If so…?

Is there some reason that paleontologists do NOT want soft dinosaur tissue?

Dinosaur found with preserved skin

and

Dinosaur found with preserved tail feathers, skin

Comments

Leave a Reply