
From Matthew Hutson at Science:
The booming field of artificial intelligence (AI) is grappling with a replication crisis, much like the ones that have afflicted psychology, medicine, and other fields over the past decade. AI researchers have found it difficult to reproduce many key results, and that is leading to a new conscientiousness about research methods and publication protocols. “I think people outside the field might assume that because we have code, reproducibility is kind of guaranteed,” says Nicolas Rougier, a computational neuroscientist at France’s National Institute for Research in Computer Science and Automation in Bordeaux. “Far from it.” Last week, at a meeting of the Association for the Advancement of Artificial Intelligence (AAAI) in New Orleans, Louisiana, reproducibility was on the agenda, with some teams diagnosing the problem—and one laying out tools to mitigate it.
…
Assuming you can get and run the original code, it still might not do what you expect. In the area of AI called machine learning, in which computers derive expertise from experience, the training data for an algorithm can influence its performance. Ke suspects that not knowing the training for the speech-recognition benchmark was what tripped up her group. “There’s randomness from one run to another,” she says. You can get “really, really lucky and have one run with a really good number,” she adds. “That’s usually what people report.” More.
Gambling addicts complain about that all the time.
See also: Robert Marks on the Turing Test vs the Lovelace Test for computer intelligence
At Technology Review: There is no clear path to giving computers the power to think
and
At Nautilus: Scientists should not accept unreplicated results (Yawn.)