No help for materialism.
– Reflecting light off satellite backs up Wheeler’s quantum theory thought experiment – October 26, 2017 – Bob Yirka:
Excerpt: Back in the late 1970s, physicist Johan Wheeler tossed around a thought experiment in which he asked what would happen if tests allowed researchers to change parameters after a photon was fired, but before it had reached a sensor for testing—would it somehow alter its behavior mid-course? He also considered the possibilities as light from a distant quasar made its way through space, being lensed by gravity. Was it possible that the light could somehow choose to behave as a wave or a particle depending on what scientists here on Earth did in trying to measure it? …
he experiment consisted of shooting a laser beam at a beam splitter, which aimed the beam at a satellite traveling in low Earth orbit, which reflected it back to Earth. But as the light traveled back to Earth, the researchers had time to make a choice whether or not to activate a second beam splitter as the light was en route. Thus, they could test whether the light was able to sense what they were doing and respond accordingly. The team reports that the light behaved just as Wheeler had predicted—demonstrating either particle-like or wave-like behavior, depending on the behavior of those studying it.
– Extending Wheeler’s delayed-choice experiment to space – Oct. 25, 2017
Excerpt: We implement Wheeler’s idea along a satellite-ground interferometer that extends for thousands of kilometers in space….
From Wheeler: “No phenomenon is a physical phenomenon until it is an observed phenomenon.” — John Wheeler, in Robert J. Scully, The Demon and the Quantum (2007), 191.
Wheeler’s Classic Delayed Choice Experiment: (original Thought Experiment)
Excerpt: Now, for many billions of years the photon is in transit in region 3. Yet we can choose (many billions of years later) which experimental set up to employ – the single wide-focus, or the two narrowly focused instruments. We have chosen whether to know which side of the galaxy the photon passed by (by choosing whether to use the two-telescope set up or not, which are the instruments that would give us the information about which side of the galaxy the photon passed). We have delayed this choice until a time long after the particles “have passed by one side of the galaxy, or the other side of the galaxy, or both sides of the galaxy,” so to speak. Yet, it seems paradoxically that our later choice of whether to obtain this information determines which side of the galaxy the light passed, so to speak, billions of years ago. So it seems that time has nothing to do with effects of quantum mechanics. And, indeed, the original thought experiment was not based on any analysis of how particles evolve and behave over time – it was based on the mathematics. This is what the mathematics predicted for a result, and this is exactly the result obtained in the laboratory.
The following experiment extended Wheeler’s delayed choice experiment:
The Experiment That Debunked Materialism – video – (delayed choice quantum eraser)
Delayed Choice Quantum Eraser Experiment Explained:
And here is another variation of Wheeler’s delayed choice experiment that was done with atoms instead of photons: Experiment confirms quantum theory weirdness – May 27, 2015
Excerpt: The bizarre nature of reality as laid out by quantum theory has survived another test, with scientists performing a famous experiment and proving that reality does not exist until it is measured.
Physicists at The Australian National University (ANU) have conducted John Wheeler’s delayed-choice thought experiment, which involves a moving object that is given the choice to act like a particle or a wave. Wheeler’s experiment then asks – at which point does the object decide?
Common sense says the object is either wave-like or particle-like, independent of how we measure it. But quantum physics predicts that whether you observe wave like behavior (interference) or particle behavior (no interference) depends only on how it is actually measured at the end of its journey. This is exactly what the ANU team found.
“It proves that measurement is everything. At the quantum level, reality does not exist if you are not looking at it,” said Associate Professor Andrew Truscott from the ANU Research School of Physics and Engineering.
Despite the apparent weirdness, the results confirm the validity of quantum theory, which,, has enabled the development of many technologies such as LEDs, lasers and computer chips.
The ANU team not only succeeded in building the experiment, which seemed nearly impossible when it was proposed in 1978, but reversed Wheeler’s original concept of light beams being bounced by mirrors, and instead used atoms scattered by laser light.
“Quantum physics’ predictions about interference seem odd enough when applied to light, which seems more like a wave, but to have done the experiment with atoms, which are complicated things that have mass and interact with electric fields and so on, adds to the weirdness,” said Roman Khakimov, PhD student at the Research School of Physics and Engineering.